A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition para...A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.展开更多
Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_...Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.展开更多
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 p...The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.展开更多
The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperatur...The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600 ℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2 W2 O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3 SiC2 and 5 wt% Ag2 W2 O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07×10-5-9.89×10-5 mm3/(Nm) over a wide temperature range from room temperature to 600 ℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides.展开更多
Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-...Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt...Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.展开更多
Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-o...Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.展开更多
The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the po...The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the polymer-based composite.Unfortunately,up to now,published work on the effect of nano-particles on the tribological performance of the fabric composite which can be used as a self-lubricating liner is quite scarce.Therefore,for the purpose of exploring a way to significantly improve the tribological performance of the fabric composite,the tribological performance of the Kevlar/PTFE fabric composite filled with nano-titania is evaluated by using the block-on-ring wear tester.The scanning electron microscopy is utilized to observe the morphologies of worn surfaces of the fabric composites and the counterparts.The tensile properties of the composites are evaluated on the universal material testing machine.The test results show that the addition of nano-titania at a proper mass fraction of the matrix resin improves the wear resistance and the tensile strength,decreases the friction coefficient,and makes the wear volume of the composite reach a relative steady state more quickly;plastic deformation and microcutting are important for the wear of the fabric composite;a lubricating layer is formed on the worn surface of the composite during sliding,and the lubricating layer is critical for the tribological performance of the composite;the formation and properties of the lubricating layer are influenced by the nano-titania particles.The proposed study on the effect of nano-titania on the tribological performance of the Kevlar/PTFE fabric composite,especially on the evolution of the worn surface of the composite,provides the basis for further understanding of the influence mechanism of the nano-particles on the tribological performance of the composite and explores a method of improving the tribological performance of the composite.展开更多
In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr...In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr,Ni,ferro-boron,Si and titanium powders as the raw materials at low temperature of 1000℃,and a new kind of coating materials was developed.By means of SEM,EDS,XRD and surface hardness tester,the microstructures,phases,hardness and wear-resistance of the coating were analyzed,respectively.The results revealed that the coating was mainly composed of the ceramic in-situ synthesized reinforcement phases of TiC,Cr7C3 and Cr5B3 and the binder phases in-situ synthesized of Ni31Si12 and(Ni,Fe)solid solution;The ceramic reinforcement phases of TiC,Cr7C3 and Cr5B3 were randomly distributed in the binder phases of Ni31Si12 and(Ni,Fe)solid solution;The coating had about 15vol%pores and can possibly be applied as a self-lubrication coating;The coating and the substrate were integrated together by metallurgical bonding;The coating had a hardness up to 91-94HR15N.展开更多
Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs)...Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.展开更多
Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor depositi...Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ℃ was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating.展开更多
Ni-based alloy/W/graphite self-lubricating composites with different graphite addition amounts were prepared using PM (powder metallurgy) method. It is found that the addtion of graphite can increase the tensile str...Ni-based alloy/W/graphite self-lubricating composites with different graphite addition amounts were prepared using PM (powder metallurgy) method. It is found that the addtion of graphite can increase the tensile strength and hardness, while the bending strength decreases. The tribological properties of the composites when rubbing with Al2O3 ceramic disc were investigated in the temperature range of 20600℃. The results show that the tribological properties of the alloy are improved by adding graphite. When the graphite content is up to 9%, the friction coefficient at 600℃ is about 0.2, which is one third of that with no graphite. At elevated temperature, the friction coefficients change a little with velocity and load. At room temperature, graphite extruded from the composite plays the the role of lubrication. The synergistic effect of oxide films and graphite are responsible for the reduction of friction coefficient at high temperature.展开更多
The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms.Data-driven methods,including machine learning(ML)algorithms,can yield a better comprehensive understa...The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms.Data-driven methods,including machine learning(ML)algorithms,can yield a better comprehensive understanding of complex problems under the influence of multiple parameters,typically for how tribological performances and material properties correlate.Correlation of friction coefficients and wear rates of copper/aluminum-graphite(Cu/Al-graphite)self-lubricating composites with their inherent material properties(composition,lubricant content,particle size,processing process,and interfacial bonding strength)and the variables related to the testing method(normal load,sliding speed,and sliding distance)were analyzed using traditional approaches,followed by modeling and prediction of tribological properties through five different ML algorithms,namely support vector machine(SVM),K-Nearest neighbor(KNN),random forest(RF),eXtreme gradient boosting(XGBoost),and least-squares boosting(LSBoost),based on the tribology experimental data.Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data.Herein,the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates,with R^(2) of 0.9219 and 0.9243,respectively.Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients,and the normal load,the content of graphite,and the hardness of the matrix influence the wear rates the most.展开更多
To expand the use of metal–organic frameworks(MOFs)based self-lubricating composite,flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant.In this work,the mechanism of oleamine adsorption an...To expand the use of metal–organic frameworks(MOFs)based self-lubricating composite,flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant.In this work,the mechanism of oleamine adsorption and desorption by MIL-88D was investigated through molecular simulations and experiments.Molecular simulations showed that the oleamines can be physically adsorbed into open MIL-88Ds with the Fe and O atoms of MIL-88D interacting with oleamine NH2-group.Higher temperature can cause Ole@MIL-88D to release more oleamines,while higher pressure on Ole@MIL-88D caused less oleamines released.Moreover the Ole@MIL-88D was incorporated into epoxy resin(EP)for friction tests.The optimum mass ratio of MIL-88D to EP is 15 wt%,and the EP/Ole@MIL-88D prefers light load and high frequency friction.This work suggests that flexible MOFs can be used as a nanocontainer for loading lubricant,and can be used as a new self-lubricating composite.展开更多
Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage o...Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage of the lubricating film on a worn surface significantly influences the sliding process.However,it is difficult to quantify the film coverage owing to the thin and discontinuous character of the lubricating film and the high roughness of the worn surface.A quantitative characterization of the lubricating film coverage based on X-ray photoelectron spectroscopy(XPS)analysis was developed in this study.The friction tests of Cu-MoS2 composites with a MoS2 content of 0-40 vol%were conducted,and the worn surfaces of the composites were observed and analyzed.Further,the influence of the MoS2 volume content on the coverage of the lubricating film on the worn surface was investigated.The relationships among the volume fraction of the lubricant,coverage of the lubricating film,and the friction coefficient were established.The friction model for the metal matrix self-lubricating composites was developed and verified to facilitate the composition design and friction coefficient prediction of self-lubricating composites.展开更多
Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based c...Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based composite coatings,resulting in engine vibration and even jam.Many past studies had tried to solve this problem by reducing coating hardness,improving lubrication,or strengthening blade tips,but all had failed.In this paper,we proposed a novel epoxy-based composite abradable seal coating,eliminating adhesive transfer by changing metal-to-metal scraping pair to metal-to-polymer scraping pair.The coating was developed via a hierarchical structure design.Large spherical pores were uniformly distributed in the continuous epoxy matrix with fine graphite dispersion.By adding 20 vol.%graphite and 50 vol.%hollow microspheres,a self-lubricating epoxy-based coating of 0.26 friction coefficient with thermal conductivity of 0.28 W/(m·K),coating HR15 Y hardness at 54.8,and bonding strength at 18.7 MPa can be reached.When the metallic blades scrape the epoxy-based composite coating,no adhesive transfer occurs.Besides,a smooth scraped surface is formed by pseudoplastic deformation.This epoxy-based composite abradable seal coating opens a new way to improve the efficiency and reliable operations of air engine compressors.展开更多
Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. Th...Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. The effects of graphite and MoSs contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions, respectively. Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photo- electron spectroscopy (XPS). The results indicated that density, hardness and bending strength all increased with the increasing content of MoS2, while the relative density was opposite. Sample B containing 15 vol. pct graphite and 15 vol. pct MoS2 pos- sessed superior tribological properties both in air and vacuum conditions. However, the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions. In air, the volume ratio of MoS2 and graphite in the tribo-films is 0.31:1 whereas the ratio in vacuum is 1.07:1.展开更多
This work is a review of previous works,presenting and discussing the most important results obtained by an ongoing research program towards the development of innovative,low-cost,self-lubricating composites with a lo...This work is a review of previous works,presenting and discussing the most important results obtained by an ongoing research program towards the development of innovative,low-cost,self-lubricating composites with a low friction coefficient and high mechanical strength and wear resistance.Special emphasis is given to uniaxial die pressing of solid lubricant particles mixed with matrix powders and to metal injection moulding associated with in situ generation of solid lubricant particles.Initially,a microstructural model/processing route (powder injection moulding followed by plasma-assisted debinding and sintering) produced a homogeneous dispersion of in situ generated solid lubricant particles.Micrometric nodules of graphite with diameter smaller than 20 μm were formed,constituting a nanostructured stacking of graphite foils with nanometric thickness.Micro Raman analysis indicated that the graphite nodules were composed of turbostratic 2D graphite having highly misaligned graphene planes separated by large interlamellae distance.Large interplanar distance between the graphene foils and misalignment of these foils were confirmed by transmission electron microscopy and were,probably,the origin of the outstandingly low dry friction coefficient (0.04).The effect of sintering temperature,precursor content,metallic matrix composition and surface finish is also reported.Furthermore,the influence of a double-pressing/double-sintering (DPDS) technique on the tribological performance of self-lubricating uniaxially die-pressed hBN + graphite-Fe-Si-C-Mo composite is also investigated.Moreover,the tribological behaviour of die-pressed Fe-Si-C matrix composites containing 5,7.5 and 10 wt% solid lubricants (hBN and graphite) added during the mixing step is analysed in terms of mechanical properties and wear mechanisms.Finally,the synergy between solid lubricant particles dispersed in a metallic matrix and fluid lubricants in a cooperative mixed lubrication regime is presented.展开更多
文摘A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(51671217).
文摘Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.
文摘The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.
基金Funded by National Natural Science Foundation of China(No.51805183)
文摘The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600 ℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2 W2 O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3 SiC2 and 5 wt% Ag2 W2 O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07×10-5-9.89×10-5 mm3/(Nm) over a wide temperature range from room temperature to 600 ℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides.
基金Project 2006A021 supported by the Science Foundation of China University of Mining & Technology
文摘Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(2011M500127)supported by the China Postdoctoral Science Foundation+2 种基金Projects(51102089,50802115)supported by the National Natural Science Foundation of ChinaProjects(12JJ4046,12JJ9014)supported by the Natural Science Foundation of Hunan Province,ChinaProject(74341015817)supported by the Post-doctoral Fund of Central South University,China
文摘Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.
文摘Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.
文摘The Kevlar/polytetrafluroethylene(Kevlar/PTFE) fabric composite can be used as a self-lubricating liner of the self-lubricating bearing.Many types of nano-particles can improve the tribological performance of the polymer-based composite.Unfortunately,up to now,published work on the effect of nano-particles on the tribological performance of the fabric composite which can be used as a self-lubricating liner is quite scarce.Therefore,for the purpose of exploring a way to significantly improve the tribological performance of the fabric composite,the tribological performance of the Kevlar/PTFE fabric composite filled with nano-titania is evaluated by using the block-on-ring wear tester.The scanning electron microscopy is utilized to observe the morphologies of worn surfaces of the fabric composites and the counterparts.The tensile properties of the composites are evaluated on the universal material testing machine.The test results show that the addition of nano-titania at a proper mass fraction of the matrix resin improves the wear resistance and the tensile strength,decreases the friction coefficient,and makes the wear volume of the composite reach a relative steady state more quickly;plastic deformation and microcutting are important for the wear of the fabric composite;a lubricating layer is formed on the worn surface of the composite during sliding,and the lubricating layer is critical for the tribological performance of the composite;the formation and properties of the lubricating layer are influenced by the nano-titania particles.The proposed study on the effect of nano-titania on the tribological performance of the Kevlar/PTFE fabric composite,especially on the evolution of the worn surface of the composite,provides the basis for further understanding of the influence mechanism of the nano-particles on the tribological performance of the composite and explores a method of improving the tribological performance of the composite.
基金supported by Yangjiang science and technology project (0202010067)Yangjiang polytechnic for providing financial assistance.
文摘In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr,Ni,ferro-boron,Si and titanium powders as the raw materials at low temperature of 1000℃,and a new kind of coating materials was developed.By means of SEM,EDS,XRD and surface hardness tester,the microstructures,phases,hardness and wear-resistance of the coating were analyzed,respectively.The results revealed that the coating was mainly composed of the ceramic in-situ synthesized reinforcement phases of TiC,Cr7C3 and Cr5B3 and the binder phases in-situ synthesized of Ni31Si12 and(Ni,Fe)solid solution;The ceramic reinforcement phases of TiC,Cr7C3 and Cr5B3 were randomly distributed in the binder phases of Ni31Si12 and(Ni,Fe)solid solution;The coating had about 15vol%pores and can possibly be applied as a self-lubrication coating;The coating and the substrate were integrated together by metallurgical bonding;The coating had a hardness up to 91-94HR15N.
基金Funded by the National Natural Science Foundation of China(No.11272117)
文摘Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.
基金Project(2006CB600908) supported by the National Basic Research Program of China
文摘Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ℃ was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating.
文摘Ni-based alloy/W/graphite self-lubricating composites with different graphite addition amounts were prepared using PM (powder metallurgy) method. It is found that the addtion of graphite can increase the tensile strength and hardness, while the bending strength decreases. The tribological properties of the composites when rubbing with Al2O3 ceramic disc were investigated in the temperature range of 20600℃. The results show that the tribological properties of the alloy are improved by adding graphite. When the graphite content is up to 9%, the friction coefficient at 600℃ is about 0.2, which is one third of that with no graphite. At elevated temperature, the friction coefficients change a little with velocity and load. At room temperature, graphite extruded from the composite plays the the role of lubrication. The synergistic effect of oxide films and graphite are responsible for the reduction of friction coefficient at high temperature.
基金the National Key R&D Program of China(Grant No.2022YFB3809000)the Intellectual Property Program of Gansu(Grant No.22ZSCQ043).
文摘The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms.Data-driven methods,including machine learning(ML)algorithms,can yield a better comprehensive understanding of complex problems under the influence of multiple parameters,typically for how tribological performances and material properties correlate.Correlation of friction coefficients and wear rates of copper/aluminum-graphite(Cu/Al-graphite)self-lubricating composites with their inherent material properties(composition,lubricant content,particle size,processing process,and interfacial bonding strength)and the variables related to the testing method(normal load,sliding speed,and sliding distance)were analyzed using traditional approaches,followed by modeling and prediction of tribological properties through five different ML algorithms,namely support vector machine(SVM),K-Nearest neighbor(KNN),random forest(RF),eXtreme gradient boosting(XGBoost),and least-squares boosting(LSBoost),based on the tribology experimental data.Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data.Herein,the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates,with R^(2) of 0.9219 and 0.9243,respectively.Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients,and the normal load,the content of graphite,and the hardness of the matrix influence the wear rates the most.
基金Foundation of State Key Laboratory of Tribology in Advanced Equipment at Tsinghua University(Grant No.SKLTKF21B13)Natural Science Foundation of Hebei Province of China(Grant No.E2021203092)National Natural Science Foundation of China(Grant No.51905297)are acknowledged.
文摘To expand the use of metal–organic frameworks(MOFs)based self-lubricating composite,flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant.In this work,the mechanism of oleamine adsorption and desorption by MIL-88D was investigated through molecular simulations and experiments.Molecular simulations showed that the oleamines can be physically adsorbed into open MIL-88Ds with the Fe and O atoms of MIL-88D interacting with oleamine NH2-group.Higher temperature can cause Ole@MIL-88D to release more oleamines,while higher pressure on Ole@MIL-88D caused less oleamines released.Moreover the Ole@MIL-88D was incorporated into epoxy resin(EP)for friction tests.The optimum mass ratio of MIL-88D to EP is 15 wt%,and the EP/Ole@MIL-88D prefers light load and high frequency friction.This work suggests that flexible MOFs can be used as a nanocontainer for loading lubricant,and can be used as a new self-lubricating composite.
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.51804272)Natural Science Foundation of Jiangsu Province(Grant No.BK20160472)+6 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.17KJB460017)Project funded by China Postdoctoral Science Foundation(Grant No.2018M640526)Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.1601095C and 2018K073C)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX17—0623)Marine Science and Technology Project of Jiangsu Province(Grant No.HY2017-10)Cooperation Funding of Yangzhou City-Yangzhou University(Grant No.YZU201722)Jiangdu Advanced Equipment Engineering Institute of Yangzhou University(Grant No.2017-01)for the financial support provided.
文摘Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage of the lubricating film on a worn surface significantly influences the sliding process.However,it is difficult to quantify the film coverage owing to the thin and discontinuous character of the lubricating film and the high roughness of the worn surface.A quantitative characterization of the lubricating film coverage based on X-ray photoelectron spectroscopy(XPS)analysis was developed in this study.The friction tests of Cu-MoS2 composites with a MoS2 content of 0-40 vol%were conducted,and the worn surfaces of the composites were observed and analyzed.Further,the influence of the MoS2 volume content on the coverage of the lubricating film on the worn surface was investigated.The relationships among the volume fraction of the lubricant,coverage of the lubricating film,and the friction coefficient were established.The friction model for the metal matrix self-lubricating composites was developed and verified to facilitate the composition design and friction coefficient prediction of self-lubricating composites.
基金financially supported by the National Science and Technology Major Project(No.2017-VII-0012-0107)the National Program for Support of Top-notch Young Professionals。
文摘Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based composite coatings,resulting in engine vibration and even jam.Many past studies had tried to solve this problem by reducing coating hardness,improving lubrication,or strengthening blade tips,but all had failed.In this paper,we proposed a novel epoxy-based composite abradable seal coating,eliminating adhesive transfer by changing metal-to-metal scraping pair to metal-to-polymer scraping pair.The coating was developed via a hierarchical structure design.Large spherical pores were uniformly distributed in the continuous epoxy matrix with fine graphite dispersion.By adding 20 vol.%graphite and 50 vol.%hollow microspheres,a self-lubricating epoxy-based coating of 0.26 friction coefficient with thermal conductivity of 0.28 W/(m·K),coating HR15 Y hardness at 54.8,and bonding strength at 18.7 MPa can be reached.When the metallic blades scrape the epoxy-based composite coating,no adhesive transfer occurs.Besides,a smooth scraped surface is formed by pseudoplastic deformation.This epoxy-based composite abradable seal coating opens a new way to improve the efficiency and reliable operations of air engine compressors.
基金financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91026018)the National Natural Science Foundation of China (No. 60979017)the Doctoral Fund of Ministry of Education of China (No. 20110111110015)
文摘Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. The effects of graphite and MoSs contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions, respectively. Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photo- electron spectroscopy (XPS). The results indicated that density, hardness and bending strength all increased with the increasing content of MoS2, while the relative density was opposite. Sample B containing 15 vol. pct graphite and 15 vol. pct MoS2 pos- sessed superior tribological properties both in air and vacuum conditions. However, the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions. In air, the volume ratio of MoS2 and graphite in the tribo-films is 0.31:1 whereas the ratio in vacuum is 1.07:1.
文摘This work is a review of previous works,presenting and discussing the most important results obtained by an ongoing research program towards the development of innovative,low-cost,self-lubricating composites with a low friction coefficient and high mechanical strength and wear resistance.Special emphasis is given to uniaxial die pressing of solid lubricant particles mixed with matrix powders and to metal injection moulding associated with in situ generation of solid lubricant particles.Initially,a microstructural model/processing route (powder injection moulding followed by plasma-assisted debinding and sintering) produced a homogeneous dispersion of in situ generated solid lubricant particles.Micrometric nodules of graphite with diameter smaller than 20 μm were formed,constituting a nanostructured stacking of graphite foils with nanometric thickness.Micro Raman analysis indicated that the graphite nodules were composed of turbostratic 2D graphite having highly misaligned graphene planes separated by large interlamellae distance.Large interplanar distance between the graphene foils and misalignment of these foils were confirmed by transmission electron microscopy and were,probably,the origin of the outstandingly low dry friction coefficient (0.04).The effect of sintering temperature,precursor content,metallic matrix composition and surface finish is also reported.Furthermore,the influence of a double-pressing/double-sintering (DPDS) technique on the tribological performance of self-lubricating uniaxially die-pressed hBN + graphite-Fe-Si-C-Mo composite is also investigated.Moreover,the tribological behaviour of die-pressed Fe-Si-C matrix composites containing 5,7.5 and 10 wt% solid lubricants (hBN and graphite) added during the mixing step is analysed in terms of mechanical properties and wear mechanisms.Finally,the synergy between solid lubricant particles dispersed in a metallic matrix and fluid lubricants in a cooperative mixed lubrication regime is presented.