Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
Pancreatic fluid collections(PFCs) are seen in up to 50% of cases of acute pancreatitis. The Revised Atlanta classification categorized these collections on the basis of duration of disease and contents, whether liqui...Pancreatic fluid collections(PFCs) are seen in up to 50% of cases of acute pancreatitis. The Revised Atlanta classification categorized these collections on the basis of duration of disease and contents, whether liquid alone or a mixture of fluid and necrotic debris. Management of these different types of collections differs because of the variable quantity of debris; while patients with pseudocysts can be drained by straight-forward stent placement, walledoff necrosis requires multi-disciplinary approach. Differentiating these collections on the basis of clinical severity alone is not reliable, so imaging is primarily performed. Contrast-enhanced computed tomography is the commonly used modality for the diagnosis and assessment of proportion of solid contents in PFCs; however with certain limitations such as use of iodinated contrast material especially in renal failure patients and radiation exposure. Magnetic resonance imaging(MRI) performs better than computed tomography(CT) in characterization of pancreatic/peripancreatic fluid collections especially for quantification of solid debris and fat necrosis(seen as fat density globules), and is an alternative in those situations where CT is contraindicated. Also magnetic resonance cholangiopancreatography is highly sensitive for detecting pancreatic duct disruption and choledocholithiasis. Endoscopic ultrasound is an evolving technique with higher reproducibility for fluid-to-debris component estimation with the added advantage of being a single stage procedure for both diagnosis(solid debris delineation) and management(drainage of collection) in the same sitting. Recently role of diffusion weighted MRI and positron emission tomography/CT with ^(18)F-FDG labeled autologous leukocytes is also emerging for detection of infection noninvasively. Comparative studies between these imaging modalities are still limited. However we look forward to a time when this gap in literature will be fulfilled.展开更多
This study evaluates the long-term radiometric performance of the USGS new released Landsat Collection 1 archive, including the absolute calibration of each Landsat sensor as well as the relative cross-calibration amo...This study evaluates the long-term radiometric performance of the USGS new released Landsat Collection 1 archive, including the absolute calibration of each Landsat sensor as well as the relative cross-calibration among the four most popular Landsat sensors. A total of 920 Landsat Collection 1 scenes were evaluated against the corresponding Pre-Collection images over a Pseudo-Invariant Site, Railroad Valley Playa Nevada, United States (RVPN). The radiometric performance of the six Landsat solar reflective bands, in terms of both Digital Numbers (DNs) and at-sensor Top of Atmosphere (TOA) reflectance, on the sensor cross-calibration was examined. Results show that absolute radiometric calibration at DNs level was applied to the Landsat-4 and -5 TM (L4 TM and L5 TM) by –1.119% to 0.126%. For L4 TM and L5 TM, the cross-calibration decreased the radiometric measurement level by rescaling at-sensor radiance to DN values. The radiometric changes, –0.77% for L4 TM, 0.95% for L5 TM, –0.26% for L7 ETM+, and –0.01% for L8 OLI, were detected during the cross-calibration stage of converting DNs into TOA reflectance. This study has also indicated that the long-term radiometric performance for the Landsat Collection 1 archive is promising. Supports of these conclusions were demonstrated through the time-series analysis based on the Landsat Collection 1 image stack. Nevertheless, the radiometric changes across the four Landsat sensors raised concerns of the previous Landsat Pre-Collection based results. We suggest that Landsat users should pay attention to differences in results from Pre-Collection and Collection 1 time-series data sets.展开更多
To maximize signal collection in nonlinear optical microscopy,non-descanned epi-detection is generally adopted for in vivo imaging.However,because of severe scattering in biological samples,most of the emitted fluores...To maximize signal collection in nonlinear optical microscopy,non-descanned epi-detection is generally adopted for in vivo imaging.However,because of severe scattering in biological samples,most of the emitted fluorescence photons go beyond the collection angles of objectives and thus cannot be detected.Here,we propose an extended detection scheme to enhance the collection of scattered photons in nonlinear fluorescence microscopy using a silicon photomultiplier array ahead of the front apertures of objectives.We perform numerical simulations to demonstrate the enhanced fluorescence collection via extended epi-detection in the multi-photon fluorescence imaging of human skin and mouse brain through craniotomy windows and intact skulls.For example,with red fluorescence emission at a depth of 600μm in human skin,the increased collection can be as much as about 150%with a 10×,0.6-NA objective.We show that extended epi-detection is a generally applicable,feasible technique for use in nonlinear fluorescence microscopy to enhance signal detection.展开更多
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
文摘Pancreatic fluid collections(PFCs) are seen in up to 50% of cases of acute pancreatitis. The Revised Atlanta classification categorized these collections on the basis of duration of disease and contents, whether liquid alone or a mixture of fluid and necrotic debris. Management of these different types of collections differs because of the variable quantity of debris; while patients with pseudocysts can be drained by straight-forward stent placement, walledoff necrosis requires multi-disciplinary approach. Differentiating these collections on the basis of clinical severity alone is not reliable, so imaging is primarily performed. Contrast-enhanced computed tomography is the commonly used modality for the diagnosis and assessment of proportion of solid contents in PFCs; however with certain limitations such as use of iodinated contrast material especially in renal failure patients and radiation exposure. Magnetic resonance imaging(MRI) performs better than computed tomography(CT) in characterization of pancreatic/peripancreatic fluid collections especially for quantification of solid debris and fat necrosis(seen as fat density globules), and is an alternative in those situations where CT is contraindicated. Also magnetic resonance cholangiopancreatography is highly sensitive for detecting pancreatic duct disruption and choledocholithiasis. Endoscopic ultrasound is an evolving technique with higher reproducibility for fluid-to-debris component estimation with the added advantage of being a single stage procedure for both diagnosis(solid debris delineation) and management(drainage of collection) in the same sitting. Recently role of diffusion weighted MRI and positron emission tomography/CT with ^(18)F-FDG labeled autologous leukocytes is also emerging for detection of infection noninvasively. Comparative studies between these imaging modalities are still limited. However we look forward to a time when this gap in literature will be fulfilled.
文摘This study evaluates the long-term radiometric performance of the USGS new released Landsat Collection 1 archive, including the absolute calibration of each Landsat sensor as well as the relative cross-calibration among the four most popular Landsat sensors. A total of 920 Landsat Collection 1 scenes were evaluated against the corresponding Pre-Collection images over a Pseudo-Invariant Site, Railroad Valley Playa Nevada, United States (RVPN). The radiometric performance of the six Landsat solar reflective bands, in terms of both Digital Numbers (DNs) and at-sensor Top of Atmosphere (TOA) reflectance, on the sensor cross-calibration was examined. Results show that absolute radiometric calibration at DNs level was applied to the Landsat-4 and -5 TM (L4 TM and L5 TM) by –1.119% to 0.126%. For L4 TM and L5 TM, the cross-calibration decreased the radiometric measurement level by rescaling at-sensor radiance to DN values. The radiometric changes, –0.77% for L4 TM, 0.95% for L5 TM, –0.26% for L7 ETM+, and –0.01% for L8 OLI, were detected during the cross-calibration stage of converting DNs into TOA reflectance. This study has also indicated that the long-term radiometric performance for the Landsat Collection 1 archive is promising. Supports of these conclusions were demonstrated through the time-series analysis based on the Landsat Collection 1 image stack. Nevertheless, the radiometric changes across the four Landsat sensors raised concerns of the previous Landsat Pre-Collection based results. We suggest that Landsat users should pay attention to differences in results from Pre-Collection and Collection 1 time-series data sets.
基金Project supported by the National Natural Science Foundation of China(Nos.61831014 and 61771287)the Tsinghua University Initiative Scientific Research Program,China(No.20193080076)the Graduate Education Innovation Grants,Tsinghua University,China(No.201905J003)。
文摘To maximize signal collection in nonlinear optical microscopy,non-descanned epi-detection is generally adopted for in vivo imaging.However,because of severe scattering in biological samples,most of the emitted fluorescence photons go beyond the collection angles of objectives and thus cannot be detected.Here,we propose an extended detection scheme to enhance the collection of scattered photons in nonlinear fluorescence microscopy using a silicon photomultiplier array ahead of the front apertures of objectives.We perform numerical simulations to demonstrate the enhanced fluorescence collection via extended epi-detection in the multi-photon fluorescence imaging of human skin and mouse brain through craniotomy windows and intact skulls.For example,with red fluorescence emission at a depth of 600μm in human skin,the increased collection can be as much as about 150%with a 10×,0.6-NA objective.We show that extended epi-detection is a generally applicable,feasible technique for use in nonlinear fluorescence microscopy to enhance signal detection.