Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subs...Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subsequently for an efficient design.Multiple analysis methods are known and available to gain insight into existing models.In this contribution,selected methods from various fields are applied to a real world mechanical engineering example of a currently developed clinching process.The selection of introduced methods comprises techniques of machine learning and data mining,in which the utilization is aiming at a decreased numerical effort.The methods of choice are basically discussed and references are given as well as challenges in the context of meta-modelling and sensitivities are shown.An incremental knowledge gain is provided by a step-bystep application of the numerical methods,whereas resulting consequences for further applications are highlighted.Furthermore,a visualisation method aiming at an easy design guideline is proposed.These visual decision maps incorporate the uncertainty coming from the reduction of dimensionality and can be applied in early stage of design.展开更多
Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part c...Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open.展开更多
文摘Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised.The understanding of the model characteristics is of interest for engineering tasks and subsequently for an efficient design.Multiple analysis methods are known and available to gain insight into existing models.In this contribution,selected methods from various fields are applied to a real world mechanical engineering example of a currently developed clinching process.The selection of introduced methods comprises techniques of machine learning and data mining,in which the utilization is aiming at a decreased numerical effort.The methods of choice are basically discussed and references are given as well as challenges in the context of meta-modelling and sensitivities are shown.An incremental knowledge gain is provided by a step-bystep application of the numerical methods,whereas resulting consequences for further applications are highlighted.Furthermore,a visualisation method aiming at an easy design guideline is proposed.These visual decision maps incorporate the uncertainty coming from the reduction of dimensionality and can be applied in early stage of design.
文摘Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open.