期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
1
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping
2
作者 Xiong Xu Chun Zhou +2 位作者 Chenggang Wang Xiaoyan Zhang Hua Meng 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期815-831,共17页
Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.The... Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm. 展开更多
关键词 Metric learning semi-supervised clustering prototypical network feature mapping
下载PDF
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
3
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
原文传递
Dynamic vaccine distribution model based on epidemic diffusion rule and clustering approach 被引量:2
4
作者 许晶晶 王海燕 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期132-136,共5页
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi... Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion. 展开更多
关键词 epidemic diffusion rule clustering approach SIQR model self-organizing map (SOM) neural network vaccine distribution model
下载PDF
Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion 被引量:7
5
作者 HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili 《Science China Earth Sciences》 SCIE EI CAS 2004年第7期651-658,共8页
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result... Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town. 展开更多
关键词 classification WAVELET fusion self-organizing NEURAL network feature map (SOFM) ASTER data.
原文传递
CLUSTERING OF DOA DATA IN RADAR PULSE BASED ON SOFM AND CDBW 被引量:2
6
作者 Dai Shengbo Lei Wuhu +1 位作者 Cheng Yizhe Wang Di 《Journal of Electronics(China)》 2014年第2期107-114,共8页
Clustering is the main method of deinterleaving of radar pulse using multi-parameter.However,the problem in clustering of radar pulses lies in finding the right number of clusters.To solve this problem,a method is pro... Clustering is the main method of deinterleaving of radar pulse using multi-parameter.However,the problem in clustering of radar pulses lies in finding the right number of clusters.To solve this problem,a method is proposed based on Self-Organizing Feature Maps(SOFM) and Composed Density between and within clusters(CDbw).This method firstly extracts the feature of Direction Of Arrival(DOA) data by SOFM using the characteristic of DOA parameter,and then cluster of SOFM.Through computing the cluster validity index CDbw,the right number of clusters is found.The results of simulation show that the method is effective in sorting the data of DOA. 展开更多
关键词 self-organizing feature maps(SOFM) Composed Density between and within clusters(CDbw) Hierarchical clustering
下载PDF
The novel hierarchical clustering approach using selforganizing map with optimum dimension selection
7
作者 Kshitij Tripathi 《Health Care Science》 2024年第2期88-100,共13页
Introduction: Data clustering is an important field of machine learningthat has applicability in wide areas, like, business analysis, manufacturing,energy, healthcare, traveling, and logistics. A variety of clustering... Introduction: Data clustering is an important field of machine learningthat has applicability in wide areas, like, business analysis, manufacturing,energy, healthcare, traveling, and logistics. A variety of clusteringapplications have already been developed. Data clustering approachesbased on self-organizing map (SOM) generally use the map dimensions (ofthe grid) ranging from 2 × 2 to 8 × 8 (4–64 neurons [microclusters])without any explicit reason for using the particular dimension, andtherefore optimized results are not obtained. These algorithms use somesecondary approaches to map these microclusters into the lowerdimension (actual number of clusters), like, 2, 3, or 4, as the case maybe, based on the optimum number of clusters in the specific data set. Thesecondary approach, observed in most of the works, is not SOM and is analgorithm, like, cut tree or the other.Methods: In this work, the proposed approach will give an idea of how toselect the most optimal higher dimension of SOM for the given data set,and this dimension is again clustered into the lower actual dimension.Primary and secondary, both utilize the SOM to cluster the data anddiscover that the weight matrix of the SOM is very meaningful. Theoptimized two-dimensional configuration of SOM is not the same forevery data set, and this work also tries to discover this configuration.Results: The adjusted randomized index obtained on the Iris, Wine,Wisconsin diagnostic breast cancer, New Thyroid, Seeds, A1, Imbalance,Dermatology, Ecoli, and Ionosphere is, respectively, 0.7173, 0.9134,0.7543, 0.8041, 0.7781, 0.8907, 0.8755, 0.7543, 0.5013, and 0.1728, whichoutperforms all other results available on the web and when no reductionof attributes is done in this work.Conclusions: It is found that SOM is superior to or on par with otherclustering approaches, like, k-means or the other, and could be usedsuccessfully to cluster all types of data sets. Ten benchmark data sets fromdiverse domains like medical, biological, and chemical are tested in this work,including the synthetic data sets. 展开更多
关键词 artificial neural network clustering self-organizing map
下载PDF
Self-organizing dual clustering considering spatial analysis and hybrid distance measures 被引量:10
8
作者 JIAO LiMin LIU YaoLin ZOU Bin 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1268-1278,共11页
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out... Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering. 展开更多
关键词 dual clustering DATAMINING self-organizing feature map Voronoi diagram
原文传递
An improved de-interleaving algorithm of radar pulses based on SOFM with self-adaptive network topology 被引量:1
9
作者 JIANG Wen FU Xiongjun +1 位作者 CHANG Jiayun QIN Rui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期712-721,共10页
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal... As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information. 展开更多
关键词 de-interleaving self-organizing feature map(SOFM) self-adaptive network topology(SANT)
下载PDF
Pattern recognition of messily grown nanowire morphologies applying multi-layer connected self-organized feature maps
10
作者 Qing Liu Hejun Li +1 位作者 Yulei Zhang Zhigang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第5期946-956,共11页
Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made... Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within. 展开更多
关键词 Artificial neural networks self-organizing feature maps MONTE Carlo simulation Pattern recognition Messily grown NANOWIRE MORPHOLOGIES
原文传递
Pattern recognition of seismogenic nodes using Kohonen selforganizing map: example in west and south west of Alborz region in Iran
11
作者 Mostafa Allamehzadeh Soma Durudi Leila Mahshadnia 《Earthquake Science》 CSCD 2017年第3期145-155,共11页
Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have thi... Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential. 展开更多
关键词 clustering - Earthquake prediction ~ self-organizing feature maps (SOFM)
下载PDF
Application of self-organizing neural networks to classification of plant communities in Pangquangou Nature Reserve, North China
12
作者 Jintun ZHANG Hongxiao YANG 《Frontiers in Biology》 CSCD 2008年第4期512-517,共6页
Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data ... Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data analysis.The self-organizing feature map(SOFM)is powerful tool for clustering analysis.SOFM has been applied to many research fields and it was applied to the classification of plant communities in the Pangquangou Nature Reserve in the present work.Pangquangou Nature Reserve,located at 37°20′–38°20′ N,110°18′–111°18′ E,is a part of the Luliang Mountain range.Eighty-nine samples(quadrats)of 10 m×10 m for forest,4 m×4 m for shrubland and 1 m×1 m for grassland along an elevation gradient,were set up and species data was recorded in each sample.After discussion of the mathematical algorism,clustering technique and the procedure of SOFM,the classification was carried out by using NNTool box in MATLAB(6.5).As a result,the 89 samples were clustered into 13 groups representing 13 types of plant communities.The characteristics of each community were described.The result of SOFM classification was identical to the result of fuzzy c-mean clustering and consistent with the distribution patterns of vegetation in the study area and shows significant ecological meanings.This suggests that SOFM may clearly describe the ecological relationships between plant communities and it is a very effective quantitative technique in plant ecology research. 展开更多
关键词 Neural network self-organizing feature map VEGETATION quantitative classification
原文传递
机械3维CAD模型的聚类和检索 被引量:15
13
作者 王玉 马浩军 +2 位作者 何玮 肖煜中 周雄辉 《计算机集成制造系统》 EI CSCD 北大核心 2006年第6期924-928,934,共6页
为了弥补传统的基于属性检索方法的缺陷和不足,真正实现机械3维CAD模型基于几何内容的聚类和检索,提出了一种基于内容的机械3维CAD模型的聚类和检索方法。首先,基于查找关键字的方法,将CAD模型的产品模型数据交换标准AP203 Part21文件... 为了弥补传统的基于属性检索方法的缺陷和不足,真正实现机械3维CAD模型基于几何内容的聚类和检索,提出了一种基于内容的机械3维CAD模型的聚类和检索方法。首先,基于查找关键字的方法,将CAD模型的产品模型数据交换标准AP203 Part21文件转换为属性图文件;其次,进行属性图的相关属性计算,提取特征不变量,并结合属性图的节点和边的相关属性形成CAD模型的特征不变矢量;最后,用特征不变矢量作为自组织特征映射神经网络的输入,利用其保拓扑性对CAD模型进行聚类分析。基于60种工业实用CAD模型对该方法进行了实验验证,结果表明,所提方法可行有效,能够满足一般工程检索的需要。 展开更多
关键词 相似性评估 自组织特征映射神经网络 聚类 检索
下载PDF
基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究 被引量:163
14
作者 代倩 段善旭 +3 位作者 蔡涛 陈昌松 陈正洪 邱纯 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期28-35,共8页
现有光伏发电量预测模型大多以太阳辐照度作为必要的输入,然而,由于当前国内太阳辐射站点仍较稀少且预报能力较低,因此此类预报方法难于实施。利用距离分析方法分析光伏发电量与气象因素间的相关性,确定以气温和湿度作为预报输入因子,... 现有光伏发电量预测模型大多以太阳辐照度作为必要的输入,然而,由于当前国内太阳辐射站点仍较稀少且预报能力较低,因此此类预报方法难于实施。利用距离分析方法分析光伏发电量与气象因素间的相关性,确定以气温和湿度作为预报输入因子,建立反传播(back propagation,BP)神经网络的无辐照度发电量短期预报模型。此外,为适应天气突变,采用自组织特征映射(self-organizing feature map,SOM)由云量预报信息对天气类型聚类识别,继而对各天气类型采用相应的预测网络,避免了单神经网络的过拟合问题。通过与含辐照度输入及无天气聚类识别的预测模型做交叉对比实验,预测结果表明,天气类型聚类识别能显著提高预测精度,无辐照度光伏发电量短期预测模型有较高的精度和50%湿度抗扰动性。 展开更多
关键词 光伏发电量短期预测 神经网络 气象因素 自组织特征映射聚类 距离分析
下载PDF
TGSOM:一种用于数据聚类的动态自组织映射神经网络 被引量:28
15
作者 王莉 王正欧 《电子与信息学报》 EI CSCD 北大核心 2003年第3期313-319,共7页
针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了... 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了算法中扩展因子的作用。扩展因子与训练样本数据的维数无关,其作用是控制网络的生长,扩展因子可以反映数据聚类的精度,即扩展因子值的大小与聚类精度的高低成正比。在聚类的不同阶段使用大小不等的扩展因子还可以实现层次聚类。 展开更多
关键词 TGSOM 神经网络 数据聚类 数据挖掘 自组织特征映射 树形动态自组织映射
下载PDF
基于聚类分析的人工神经网络洪水预报模型研究 被引量:11
16
作者 尹雄锐 张翔 夏军 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2007年第3期34-40,共7页
应用模糊C均值(FCM)和自组织映射网络(SOM)两种方法将洪水流量过程线进行分解,并聚成不同的类别,结合多层前馈神经网络(MFN)建立了两个综合神经网络模型(FCMMFN和SOMMFN),进行洪水预报。在王家厂水库流域洪水预报的应用结果表明,两种聚... 应用模糊C均值(FCM)和自组织映射网络(SOM)两种方法将洪水流量过程线进行分解,并聚成不同的类别,结合多层前馈神经网络(MFN)建立了两个综合神经网络模型(FCMMFN和SOMMFN),进行洪水预报。在王家厂水库流域洪水预报的应用结果表明,两种聚类方法能够将流量过程分解为具有不同内在规律的若干过程,两种综合神经网络模型预报精度均优于单一的多层前馈网络模型,而且FCMMFN的精度高于SOMMFN。 展开更多
关键词 模糊C均值 自组织映射网络 洪水预报 聚类分析 人工神经网络
下载PDF
基于多维自组织特征映射的聚类算法研究 被引量:8
17
作者 江波 张黎 《计算机科学》 CSCD 北大核心 2008年第6期181-182,185,共3页
作为神经网络的一种方法,自组织特征映射在数据挖掘、模式分类和机器学习中得到了广泛应用。本文详细讨论了自组织特征映射的聚类算法的工作原理和具体实现算法。通过系统仿真实验分析,SOFMF算法很好地克服了许多聚类算法存在的问题,在... 作为神经网络的一种方法,自组织特征映射在数据挖掘、模式分类和机器学习中得到了广泛应用。本文详细讨论了自组织特征映射的聚类算法的工作原理和具体实现算法。通过系统仿真实验分析,SOFMF算法很好地克服了许多聚类算法存在的问题,在时间复杂度上具有良好的性能。 展开更多
关键词 组织特征映射 聚类 数据挖掘 神经网络
下载PDF
一种量子自组织特征映射网络模型及聚类算法 被引量:13
18
作者 李盼池 李士勇 《量子电子学报》 CAS CSCD 北大核心 2007年第4期463-468,共6页
提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子... 提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来。采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练。仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络。 展开更多
关键词 量子光学 量子自组织特征映射网络 量子聚类算法 量子神经元
下载PDF
基于SOFM网络的声速剖面聚类研究 被引量:3
19
作者 谢骏 浦晓波 +1 位作者 胡均川 李玉阳 《青岛大学学报(工程技术版)》 CAS 2002年第1期25-27,31,共4页
研究了自组织特征映射网络在海洋声速剖面聚类中的应用 ,并提出了一种改进算法 ,使网络对奇异样本的适应性变强 ,有效地实现了声速剖面的优化聚类 。
关键词 声速剖面 自组织特征映射网络 聚类分析 海洋声学 潜艇 SOFM网络
下载PDF
基于小波和SOM网络的医学图像融合 被引量:3
20
作者 王安娜 杨铭如 +1 位作者 刘坐乾 王婷君 《计算机工程》 CAS CSCD 北大核心 2009年第21期200-202,205,共4页
提出一种基于小波变换和自组织特征映射(SOM)神经网络的医学图像融合方法,对图像进行小波变换,以图像的小波系数为特征,采用SOM网络对图像进行聚类,并进行模糊分类,从而确定像素融合的权重,得到融合图像。仿真实验结果表明,该方法能够... 提出一种基于小波变换和自组织特征映射(SOM)神经网络的医学图像融合方法,对图像进行小波变换,以图像的小波系数为特征,采用SOM网络对图像进行聚类,并进行模糊分类,从而确定像素融合的权重,得到融合图像。仿真实验结果表明,该方法能够获得良好的性能。 展开更多
关键词 图像融合 小波变换 自组织特征映射神经网络 聚类分析
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部