Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.The...Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi...Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.展开更多
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result...Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.展开更多
Clustering is the main method of deinterleaving of radar pulse using multi-parameter.However,the problem in clustering of radar pulses lies in finding the right number of clusters.To solve this problem,a method is pro...Clustering is the main method of deinterleaving of radar pulse using multi-parameter.However,the problem in clustering of radar pulses lies in finding the right number of clusters.To solve this problem,a method is proposed based on Self-Organizing Feature Maps(SOFM) and Composed Density between and within clusters(CDbw).This method firstly extracts the feature of Direction Of Arrival(DOA) data by SOFM using the characteristic of DOA parameter,and then cluster of SOFM.Through computing the cluster validity index CDbw,the right number of clusters is found.The results of simulation show that the method is effective in sorting the data of DOA.展开更多
Introduction: Data clustering is an important field of machine learningthat has applicability in wide areas, like, business analysis, manufacturing,energy, healthcare, traveling, and logistics. A variety of clustering...Introduction: Data clustering is an important field of machine learningthat has applicability in wide areas, like, business analysis, manufacturing,energy, healthcare, traveling, and logistics. A variety of clusteringapplications have already been developed. Data clustering approachesbased on self-organizing map (SOM) generally use the map dimensions (ofthe grid) ranging from 2 × 2 to 8 × 8 (4–64 neurons [microclusters])without any explicit reason for using the particular dimension, andtherefore optimized results are not obtained. These algorithms use somesecondary approaches to map these microclusters into the lowerdimension (actual number of clusters), like, 2, 3, or 4, as the case maybe, based on the optimum number of clusters in the specific data set. Thesecondary approach, observed in most of the works, is not SOM and is analgorithm, like, cut tree or the other.Methods: In this work, the proposed approach will give an idea of how toselect the most optimal higher dimension of SOM for the given data set,and this dimension is again clustered into the lower actual dimension.Primary and secondary, both utilize the SOM to cluster the data anddiscover that the weight matrix of the SOM is very meaningful. Theoptimized two-dimensional configuration of SOM is not the same forevery data set, and this work also tries to discover this configuration.Results: The adjusted randomized index obtained on the Iris, Wine,Wisconsin diagnostic breast cancer, New Thyroid, Seeds, A1, Imbalance,Dermatology, Ecoli, and Ionosphere is, respectively, 0.7173, 0.9134,0.7543, 0.8041, 0.7781, 0.8907, 0.8755, 0.7543, 0.5013, and 0.1728, whichoutperforms all other results available on the web and when no reductionof attributes is done in this work.Conclusions: It is found that SOM is superior to or on par with otherclustering approaches, like, k-means or the other, and could be usedsuccessfully to cluster all types of data sets. Ten benchmark data sets fromdiverse domains like medical, biological, and chemical are tested in this work,including the synthetic data sets.展开更多
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out...Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.展开更多
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal...As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.展开更多
Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made...Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.展开更多
Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have thi...Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential.展开更多
Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data ...Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data analysis.The self-organizing feature map(SOFM)is powerful tool for clustering analysis.SOFM has been applied to many research fields and it was applied to the classification of plant communities in the Pangquangou Nature Reserve in the present work.Pangquangou Nature Reserve,located at 37°20′–38°20′ N,110°18′–111°18′ E,is a part of the Luliang Mountain range.Eighty-nine samples(quadrats)of 10 m×10 m for forest,4 m×4 m for shrubland and 1 m×1 m for grassland along an elevation gradient,were set up and species data was recorded in each sample.After discussion of the mathematical algorism,clustering technique and the procedure of SOFM,the classification was carried out by using NNTool box in MATLAB(6.5).As a result,the 89 samples were clustered into 13 groups representing 13 types of plant communities.The characteristics of each community were described.The result of SOFM classification was identical to the result of fuzzy c-mean clustering and consistent with the distribution patterns of vegetation in the study area and shows significant ecological meanings.This suggests that SOFM may clearly describe the ecological relationships between plant communities and it is a very effective quantitative technique in plant ecology research.展开更多
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
文摘Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
基金The National Natural Science Foundation of China (No.70671021)
文摘Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.
文摘Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.
文摘Clustering is the main method of deinterleaving of radar pulse using multi-parameter.However,the problem in clustering of radar pulses lies in finding the right number of clusters.To solve this problem,a method is proposed based on Self-Organizing Feature Maps(SOFM) and Composed Density between and within clusters(CDbw).This method firstly extracts the feature of Direction Of Arrival(DOA) data by SOFM using the characteristic of DOA parameter,and then cluster of SOFM.Through computing the cluster validity index CDbw,the right number of clusters is found.The results of simulation show that the method is effective in sorting the data of DOA.
文摘Introduction: Data clustering is an important field of machine learningthat has applicability in wide areas, like, business analysis, manufacturing,energy, healthcare, traveling, and logistics. A variety of clusteringapplications have already been developed. Data clustering approachesbased on self-organizing map (SOM) generally use the map dimensions (ofthe grid) ranging from 2 × 2 to 8 × 8 (4–64 neurons [microclusters])without any explicit reason for using the particular dimension, andtherefore optimized results are not obtained. These algorithms use somesecondary approaches to map these microclusters into the lowerdimension (actual number of clusters), like, 2, 3, or 4, as the case maybe, based on the optimum number of clusters in the specific data set. Thesecondary approach, observed in most of the works, is not SOM and is analgorithm, like, cut tree or the other.Methods: In this work, the proposed approach will give an idea of how toselect the most optimal higher dimension of SOM for the given data set,and this dimension is again clustered into the lower actual dimension.Primary and secondary, both utilize the SOM to cluster the data anddiscover that the weight matrix of the SOM is very meaningful. Theoptimized two-dimensional configuration of SOM is not the same forevery data set, and this work also tries to discover this configuration.Results: The adjusted randomized index obtained on the Iris, Wine,Wisconsin diagnostic breast cancer, New Thyroid, Seeds, A1, Imbalance,Dermatology, Ecoli, and Ionosphere is, respectively, 0.7173, 0.9134,0.7543, 0.8041, 0.7781, 0.8907, 0.8755, 0.7543, 0.5013, and 0.1728, whichoutperforms all other results available on the web and when no reductionof attributes is done in this work.Conclusions: It is found that SOM is superior to or on par with otherclustering approaches, like, k-means or the other, and could be usedsuccessfully to cluster all types of data sets. Ten benchmark data sets fromdiverse domains like medical, biological, and chemical are tested in this work,including the synthetic data sets.
基金supported by the National Natural Science Foundation of China(Grant No.40901188)the Key Laboratory of Geo-informatics of the State Bureau of Surveying and Mapping(Grant No.200906)the Fundamental Research Funds for the Central Universities(Grant No.4082002)
文摘Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)。
文摘As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51727804 and 51672223supported by the “111” project under grant No. B08040
文摘Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.
文摘Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential.
基金This study was supported by the National Natural Science Foundation(Grant No.30070140)the Teachers’Foundation of the Education Ministry of China.
文摘Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data analysis.The self-organizing feature map(SOFM)is powerful tool for clustering analysis.SOFM has been applied to many research fields and it was applied to the classification of plant communities in the Pangquangou Nature Reserve in the present work.Pangquangou Nature Reserve,located at 37°20′–38°20′ N,110°18′–111°18′ E,is a part of the Luliang Mountain range.Eighty-nine samples(quadrats)of 10 m×10 m for forest,4 m×4 m for shrubland and 1 m×1 m for grassland along an elevation gradient,were set up and species data was recorded in each sample.After discussion of the mathematical algorism,clustering technique and the procedure of SOFM,the classification was carried out by using NNTool box in MATLAB(6.5).As a result,the 89 samples were clustered into 13 groups representing 13 types of plant communities.The characteristics of each community were described.The result of SOFM classification was identical to the result of fuzzy c-mean clustering and consistent with the distribution patterns of vegetation in the study area and shows significant ecological meanings.This suggests that SOFM may clearly describe the ecological relationships between plant communities and it is a very effective quantitative technique in plant ecology research.