期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
1
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(som) neural network Urban storm
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
2
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Enhanced Self-Organizing Map Neural Network for DNA Sequence Classification
3
作者 Marghny Mohamed Abeer A. Al-Mehdhar +1 位作者 Mohamed Bamatraf Moheb R. Girgis 《Intelligent Information Management》 2013年第1期25-33,共9页
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p... The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly. 展开更多
关键词 BIOINFORMATICS Artificial Neural networks self-organizing map CLASSIFICATION SEQUENCE ALIGNMENT
下载PDF
Algorithm for Solving Traveling Salesman Problem Based on Self-Organizing Mapping Network
4
作者 朱江辉 叶航航 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期463-470,共8页
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ... Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP. 展开更多
关键词 traveling salesman problem(TSP) self-organizing mapping(som) combinatorial optimization neu-ral network
原文传递
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
5
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
原文传递
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
6
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHsom) hierarchical structure mutual information intrusion detection network security
下载PDF
基于mRMR-SOM的异步电机轴承故障诊断研究
7
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
8
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak... Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results. 展开更多
关键词 Short-term load forecasting som self-organizing map multilayer perceptron neural network electricity markets.
下载PDF
融合SOM神经网络与K-means聚类算法的用户信用画像研究
9
作者 罗博炜 罗万红 谭家驹 《铁路计算机应用》 2024年第7期14-19,共6页
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Me... 为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。 展开更多
关键词 用户信用画像 som神经网络 K-MEANS聚类算法 时间复杂度 风险控制
下载PDF
Study of TSP based on self-organizing map
10
作者 宋锦娟 白艳萍 胡红萍 《Journal of Measurement Science and Instrumentation》 CAS 2013年第4期353-360,共8页
Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is dis... Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists. 展开更多
关键词 self-organizing maps (som traveling salesman problem (TSP) neural networkDocument code:AArticle ID:1674-8042(2013)04-0353-08
下载PDF
An improved de-interleaving algorithm of radar pulses based on SOFM with self-adaptive network topology 被引量:1
11
作者 JIANG Wen FU Xiongjun +1 位作者 CHANG Jiayun QIN Rui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期712-721,共10页
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal... As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information. 展开更多
关键词 de-interleaving self-organizing feature map(SOFM) self-adaptive network topology(SANT)
下载PDF
3D Ice Shape Description Method Based on BLSOM Neural Network
12
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3D point cloud
下载PDF
Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion 被引量:7
13
作者 HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili 《Science China Earth Sciences》 SCIE EI CAS 2004年第7期651-658,共8页
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result... Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town. 展开更多
关键词 classification WAVELET fusion self-organizing NEURAL network FEATURE map (SOFM) ASTER data.
原文传递
SELF-ORGANIZING MAP OF COMPLEX NETWORKS FOR COMMUNITY DETECTION 被引量:1
14
作者 Zhenping LI Ruisheng WANG +1 位作者 Xiang-Sun ZHANG Luonan CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期931-941,共11页
Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since vario... Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks. 展开更多
关键词 Community detection complex network neural networks self-organizing map.
原文传递
SOM神经网络算法的研究与进展 被引量:78
15
作者 杨占华 杨燕 《计算机工程》 EI CAS CSCD 北大核心 2006年第16期201-202,228,共3页
自组织映射(Self-organizingMaps,SOM)算法是一种无导师学习方法,具有良好的自组织、可视化等特性,已经得到了广泛的应用和研究。该文系统地介绍了SOM算法的产生背景、基本算法。同时对SOM算法的参数设置和其不足进行了分析。重点归纳... 自组织映射(Self-organizingMaps,SOM)算法是一种无导师学习方法,具有良好的自组织、可视化等特性,已经得到了广泛的应用和研究。该文系统地介绍了SOM算法的产生背景、基本算法。同时对SOM算法的参数设置和其不足进行了分析。重点归纳了其发展过程中的各种改进算法,并对其研究热点及应用领域作了简要的综述,最后展望了该算法的发展方向。 展开更多
关键词 神经网络 自组织映射(som) 改进算法 无导师学习 神经元
下载PDF
SOM神经网络改进及在遥感图像分类中的应用 被引量:18
16
作者 任军号 吉沛琦 耿跃 《计算机应用研究》 CSCD 北大核心 2011年第3期1170-1172,1182,共4页
针对自组织特征神经网络自身算法的特点和缺陷,采用遗传算法对网络进行改进,形成了基于遗传算法的自组织特征神经网络,并从输入向量、竞争层神经元数量设置和初始权向量设定三方面,结合遥感图像的特性对自组织特征映射网络遥感图像分类... 针对自组织特征神经网络自身算法的特点和缺陷,采用遗传算法对网络进行改进,形成了基于遗传算法的自组织特征神经网络,并从输入向量、竞争层神经元数量设置和初始权向量设定三方面,结合遥感图像的特性对自组织特征映射网络遥感图像分类的方法进行了改进。将该方法应用于选择西安地区的ETM+卫星遥感图像进行分类实验。结果表明,基于遗传算法的自组织特征映射网络使得遥感图像的分类精度更高,且该算法实现简单,具有一定的工程应用价值。 展开更多
关键词 分类 自组织特征映射 神经网络 遗传算法 遥感图像
下载PDF
SOM神经网络和C-均值法在负荷分类中的应用 被引量:15
17
作者 王文生 王进 王科文 《电力系统及其自动化学报》 CSCD 北大核心 2011年第4期36-39,共4页
负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络... 负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络对初始训练样本进行分类,将获得的聚类数目和各类中心点作为C-均值算法的初始输入进一步聚类。最后通过动模实验的分类结果表明该方法可自动获取分类数,应用于负荷特性分类研究中具有较强的实用性和有效性。 展开更多
关键词 电力系统 负荷建模 负荷特性分类 自组织特征映射 som神经网络 C-均值法
下载PDF
基于SOM模型的中国耕地压力分类研究 被引量:10
18
作者 李春华 李宁 史培军 《长江流域资源与环境》 CAS CSSCI CSCD 北大核心 2007年第3期318-322,共5页
根据耕地利用在经济、社会和生态方面面临的压力状况,以指标构建原则为基础,设计一套压力大小量化的指标体系,引入具有较强的聚类和容错能力的自组织特征映射(SOM)神经网络模型,在说明SOM网络模型和算法的基础上,应用自组织特征映射网... 根据耕地利用在经济、社会和生态方面面临的压力状况,以指标构建原则为基础,设计一套压力大小量化的指标体系,引入具有较强的聚类和容错能力的自组织特征映射(SOM)神经网络模型,在说明SOM网络模型和算法的基础上,应用自组织特征映射网络的聚类功能,以MATLAB语言构建SOM网络模型,对我国的31省(市、自治区)耕地利用压力大小进行了分类。结果显示我国耕地压力的区域差显著且与经济地域差异有高度的一致性,表明经济发展是耕地压力的主要来源。选取大样本的神经网络训练得到的结果和现实的一致也表明,自组织特征映射模型是一种适用的耕地压力区域分类新方法。 展开更多
关键词 自组织特征映射网络(som网络) 耕地压力分类 地域差异 中国
下载PDF
基于改进的SOM神经网络在水质评价分析中的应用 被引量:19
19
作者 雷璐宁 石为人 范敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2379-2383,共5页
随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网... 随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网络(SOM)方法来进行水质评价,利用SOM神经网络能在无监督、无先验知识的状态下对样本进行自组织、自学习,实现对样本的评价与分类这一特点。通过引入主成分分析,解决SOM神经网络处理高维和相关性强的指标时出现的问题,提高网络收敛速度和聚类准确性。仿真结果表明:改进后的SOM神经网络能够直观准确地评价水体质量,反映水质整体状况。 展开更多
关键词 水质评价 自组织特征映射 som神经网络 主成分分析
下载PDF
基于核Batch SOM聚类优化的语义Web服务发现机制研究 被引量:6
20
作者 陈蕾 杨庚 +1 位作者 张迎周 陈燕俐 《电子与信息学报》 EI CSCD 北大核心 2011年第6期1307-1313,共7页
如何快速、准确和高效地发现满足用户需求的Web服务已成为制约服务发展的瓶颈之一。该文针对现有Web服务发现机制中存在的效率低下和查准率不高的两个主要问题,提出了一个基于核Batch SOM神经网络聚类优化的语义Web服务发现框架。该框... 如何快速、准确和高效地发现满足用户需求的Web服务已成为制约服务发展的瓶颈之一。该文针对现有Web服务发现机制中存在的效率低下和查准率不高的两个主要问题,提出了一个基于核Batch SOM神经网络聚类优化的语义Web服务发现框架。该框架分别在服务表示阶段引入WordNet和隐含语义索引技术对Web服务进行语义扩展和概念语义空间降维;在服务分类阶段利用核机学习理论改进一类适用于Web服务分类的核Batch SOM神经网络算法;在服务匹配阶段提出一种基于核余弦相似性测度的Web服务匹配算法。最后,真实Web服务数据集上的实验结果验证了所提出方法的可行性。 展开更多
关键词 WEB服务发现 自组织映射神经网络 WORDNET 隐含语义索引 相似性度量
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部