Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu...Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p...The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,...Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively.展开更多
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak...Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.展开更多
Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is dis...Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists.展开更多
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal...As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.展开更多
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t...When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.展开更多
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result...Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.展开更多
Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since vario...Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks.展开更多
基金supported by the National Key R&D Program of China (GrantN o.2016YFC0401407)National Natural Science Foundation of China (Grant Nos. 51479003 and 51279006)
文摘Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
文摘The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
基金Supported by the Natural Science Foundation of Tianjin(No.15JCQNJC00200)
文摘Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively.
文摘Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.
文摘Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)。
文摘As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.
基金supported by the AG600 project of AVIC General Huanan Aircraft Industry Co.,Ltd.
文摘When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.
文摘Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos 10631070, 60873205, 10701080, and the Beijing Natural Science Foundation under Grant No. 1092011. It is also partially supported by the Foundation of Beijing Education Commission under Grant No. SM200910037005, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201006217), and the Foundation of WYJD200902.
文摘Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks.