期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
1
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks T-S fuzzy model chaotic search least square estimation MODELING
下载PDF
Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network 被引量:2
2
作者 Dheeraj Kumar Dixit Amit Bhagat Dharmendra Dangi 《Computers, Materials & Continua》 SCIE EI 2022年第6期5733-5750,共18页
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th... In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model. 展开更多
关键词 Fake news detection text classification convolution recurrent neural network fuzzy convolutional recurrent neural networks
下载PDF
Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 被引量:1
3
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期1-15,共15页
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili... In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. 展开更多
关键词 recurrent neural networks linear matrix inequality Lyapunov stability time-varyingdelays TS fuzzy model
下载PDF
The Fuzzy Neural Network Control Scheme With H∞ Tracking Characteristic of Space Robot System With Dual-arm After Capturing a Spin Spacecraft 被引量:1
4
作者 Jing Cheng Li Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1417-1424,共8页
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f... In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results. 展开更多
关键词 Capturing operation calm motion control closed chain system dual-arm space robot recurrent fuzzy neural network H∞tracking characteristic
下载PDF
The study of fuzzy chaotic neural network based on chaotic method
5
作者 WANG Ke-jun TANG Mo ZHANG Yan 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期64-70,共7页
关键词 模糊混沌神经网络 数理逻辑图 递归模糊神经网络 混沌方法
下载PDF
Classification of Short Time Series in Early Parkinson’s Disease With Deep Learning of Fuzzy Recurrence Plots 被引量:9
6
作者 Tuan D.Pham Karin Wardell +1 位作者 Anders Eklund Goran Salerud 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第6期1306-1317,共12页
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for... There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects. 展开更多
关键词 Deep learning early Parkinson’s disease(PD) fuzzy recurrence plots long short-term memory(LSTM) neural networks pattern classification short time series
下载PDF
A novel compensation-based recurrent fuzzy neural network and its learning algorithm 被引量:6
7
作者 WU Bo WU Ke LU JianHong 《Science in China(Series F)》 2009年第1期41-51,共11页
Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional... Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability. 展开更多
关键词 compensation-based recurrent fuzzy neural network sequential learning method improved BP algorithm nonlinear system
原文传递
Wastewater treatment control method based on a rule adaptive recurrent fuzzy neural network 被引量:4
8
作者 Junfei Qiao Gaitang Han +1 位作者 Honggui Han Wei Chai 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第2期94-110,共17页
Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy b... Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions. 展开更多
关键词 Information processing ability recurrent fuzzy neural network Rule adaptive Wastewater treatment
原文传递
AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR
9
作者 JIALi YUJinshou 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第1期43-54,共12页
In this paper, an intelligent control system based on recurrent neural fuzzynetwork is presented for complex, uncertain and nonlinear processes, in which a recurrent neuralfuzzy network is used as controller (RNFNC) t... In this paper, an intelligent control system based on recurrent neural fuzzynetwork is presented for complex, uncertain and nonlinear processes, in which a recurrent neuralfuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neuralnetwork based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradientinformation partial deriv y/partial deriv u for optimizing the parameters of controller. Comparedwith many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzycontroller. Moreover, recursive predictive error algorithm (RPE) is implemented to construct RNNM online. Lastly, in order to evaluate the performance of the proposed control system, the presentedcontrol system is applied to continuously stirre'd tank reactor (CSTR). Simulation comparisons,based on control effect and output error, with general fuzzy controller and feed-forward neuralfuzzy network controller (FNFNC), are conducted. In addition, the rates of convergence of RNNMrespectively using RPE algorithm and gradient learning algorithm are also compared. The results showthat the proposed control system is better for controlling uncertain and nonlinear processes. 展开更多
关键词 recurrent neural network neural fuzzy system adaptive control recursiveprediction error CSTR
原文传递
Achieving of Fuzzy Automata for Processing Fuzzy Logic
10
作者 舒兰 吴青娥 《Journal of Electronic Science and Technology of China》 2005年第4期364-368,共5页
At present, there has been an increasing interest in neuron-fuzzy systems, the combinations of artificial neural networks with fuzzy logic. In this paper, a definition of fuzzy finite state automata (FFA) is introdu... At present, there has been an increasing interest in neuron-fuzzy systems, the combinations of artificial neural networks with fuzzy logic. In this paper, a definition of fuzzy finite state automata (FFA) is introduced and fuzzy knowledge equivalence representations between neural networks, fuzzy systems and models of automata are discussed. Once the network has been trained, we develop a method to extract a representation of the FFA encoded in the recurrent neural network that recognizes the training rules. 展开更多
关键词 fuzzy recurrent neural network fuzzy finite state automata (FFA) fuzzy systems knowledge representation.
下载PDF
一种用于非线性动态辨识的新型神经网络
11
作者 张剑 林瑞昌 毕天昊 《控制工程》 CSCD 北大核心 2024年第8期1383-1391,共9页
为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加... 为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加了模糊推论与一个递归通道。为验证SCRFNN在系统辨识中的有效性,设计一个新的NDSI在线学习模型与代码设计流程图,并以此作为在线学习架构,将以上3个神经网络模型对4个串-并型非线性动态系统进行辨识分析。经过仿真表明,新提出的SCRFNN通过存储内部状态,具备了映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。且在模糊规则数、学习收敛速度、学习与预测误差均方根值、预测精准度方面也取得了良好的效果。 展开更多
关键词 自建递归型模糊神经网络 自建型模糊神经网络 多层神经元神经网络 非线性动态系统辨识
下载PDF
基于循环Legendre模糊神经网络的DFIG二阶滑模容错控制
12
作者 徐鹏涛 李东东 赵耀 《上海电力大学学报》 CAS 2024年第5期405-414,420,共11页
针对双馈感应发电机(DFIG)易受外界干扰而对并网产生影响的问题,将循环Legendre模糊神经网络(RLFNN)与二阶滑模控制(SOSMC)应用于DFIG控制中,从而提高了DFIG在传感器故障和不确定条件下的功率跟踪能力。首先,SOSMC采用超螺旋算法进行推... 针对双馈感应发电机(DFIG)易受外界干扰而对并网产生影响的问题,将循环Legendre模糊神经网络(RLFNN)与二阶滑模控制(SOSMC)应用于DFIG控制中,从而提高了DFIG在传感器故障和不确定条件下的功率跟踪能力。首先,SOSMC采用超螺旋算法进行推导,并使用Lyapunov第二定理证明了控制系统的渐近稳定性。其次,提出了使用RLFNN来估计不确定部分,RLFNN的控制律与参数可在线训练,以进一步确保系统鲁棒性。仿真结果表明,所提出的方法能够使DFIG在发生传感器故障、参数变化以及外部干扰情况下保持正常运行,实现了有效容错控制。 展开更多
关键词 双馈感应发电机 容错控制 超螺旋算法 二阶滑模控制 循环Legendre模糊神经网络
下载PDF
基于递归模糊神经网络的感应电机无速度传感器矢量控制 被引量:53
13
作者 王耀南 王辉 +1 位作者 邱四海 黄守道 《中国电机工程学报》 EI CSCD 北大核心 2004年第5期84-89,共6页
该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当... 该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当系统参数动态变化或受到外部不确定性因素的影响时,利用神经网络来在线动态的调整网络的隶属函数参数以及神经网络递归权值,使系统仍将具有很好的动静态性能。 展开更多
关键词 感应电机 无速度传感器 矢量控制 递归模糊神经网络 隶属函数 最优控制器
下载PDF
一种递归模糊神经网络自适应控制方法 被引量:9
14
作者 毛六平 王耀南 +1 位作者 孙炜 戴瑜兴 《电子学报》 EI CAS CSCD 北大核心 2006年第12期2285-2287,共3页
构造了一种递归模糊神经网络(RFNN),该RFNN利用递归神经网络实现模糊推理,并通过在网络的第一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN分别用于对被... 构造了一种递归模糊神经网络(RFNN),该RFNN利用递归神经网络实现模糊推理,并通过在网络的第一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 展开更多
关键词 递归模糊神经网络 自适应控制 交流伺服
下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
15
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 T-S模糊模型 非线性系统 建模 学习算法
下载PDF
一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7
16
作者 侯润民 刘荣忠 +2 位作者 高强 王力 邓桐彬 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRW... 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 展开更多
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络
下载PDF
基于动态递归模糊神经网络盲均衡算法的研究 被引量:8
17
作者 张朝霞 海振宏 王华奎 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期539-541,共3页
模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网... 模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网络的盲均衡算法是可行的,而且也是必要的。仿真结果表明:由于动态模糊神经网络的均衡过程同时利用了系统的当前数据和历史数据,对动态系统的均衡,较传统神经网络在均衡的精度和稳定性方面具有更好的效果。 展开更多
关键词 动态递归 模糊神经网络 盲均衡 隶属函数
下载PDF
动态模糊神经网络研究 被引量:9
18
作者 王京慧 李宏光 《北京化工大学学报(自然科学版)》 CAS CSCD 2003年第2期78-81,共4页
针对静态网络无法处理暂态问题 ,对具有递归环节的动态模糊神经网络进行了研究。通过在网络第二层中加入内部反馈连接 ,使其具有动态映射能力 ,从而对动态系统有更好的响应。网络使用遗传算法与反向传播BP(BackPropagation)算法相结合... 针对静态网络无法处理暂态问题 ,对具有递归环节的动态模糊神经网络进行了研究。通过在网络第二层中加入内部反馈连接 ,使其具有动态映射能力 ,从而对动态系统有更好的响应。网络使用遗传算法与反向传播BP(BackPropagation)算法相结合来训练 ,避免陷入局部最优解。采用时序预测和动态非线性系统进行了仿真研究 ,结果表明 ,动态模糊神经网络较之普通模糊神经网络在收敛速度、预测精度和网络规模等方面都有较大的改善 。 展开更多
关键词 动态模糊神经网络 递归 动态系统 遗传算法 BP算法 学习算法
下载PDF
基于递归模糊神经网络的机器人鲁棒H_∞跟踪控制 被引量:8
19
作者 彭金柱 王耀南 王杰 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1145-1151,共7页
利用递归模糊神经网络来逼近机器人系统中的非线性函数,提出了一种具有自适应能力的H∞控制策略.该控制策略能够减弱机器人系统的外扰,并把模糊神经网络的重构误差对系统的影响控制在指定的范围内.同时又能保证闭环系统的所有信号都是... 利用递归模糊神经网络来逼近机器人系统中的非线性函数,提出了一种具有自适应能力的H∞控制策略.该控制策略能够减弱机器人系统的外扰,并把模糊神经网络的重构误差对系统的影响控制在指定的范围内.同时又能保证闭环系统的所有信号都是有界的.为了验证基于递归模糊神经网络的H∞控制策略的有效性,将其与计算力矩控制方法进行比较,仿真结果表明,在存在外扰的情况下,所提出的控制策略具有比计算力矩控制方法更好的跟踪性能. 展开更多
关键词 递归模糊神经网络 机器人系统 鲁棒H∞控制 跟踪控制
下载PDF
自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用 被引量:9
20
作者 李迪 陈向坚 +2 位作者 续志军 杨帆 牛文达 《光学精密工程》 EI CAS CSCD 北大核心 2011年第6期1406-1413,共8页
针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区... 针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区间二型模糊集模型,用于将每个规则的激活强度反馈到自身构成内反馈回路,其参数学习采用梯度下降算法;后件为带有区间权值的Takagi-Sugeno-Kang(TSK)模型,其参数学习采用有序规则卡尔曼滤波算法,且网络初始规则数为零。所有规则均通过结构学习和前后件参数同时在线学习来产生,其网络结构学习采用的是在线区间二型模糊群集。为验证提出的神经网络的优越性,将其应用到单输入单输出动态时变系统的辨识中。实验结果表明,相对于前馈一型/二型模糊神经网络、递归一型模糊神经网络,该神经网络的辨识能力强,即使在存在白噪声的条件下,也能减小测试及训练误差。 展开更多
关键词 自组织递归区间 二型模糊神经网络 卡尔曼滤波 梯度下降法 噪声干扰 动态时变系统辨识
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部