MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagatin...MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.展开更多
An effective method was reported to prepare low-oxygen Ti powder,which included two experimental steps:the fast conversion of TiO_(2) to TiO_(x<1) powder by self-propagating high-temperature synthesis(SHS)process a...An effective method was reported to prepare low-oxygen Ti powder,which included two experimental steps:the fast conversion of TiO_(2) to TiO_(x<1) powder by self-propagating high-temperature synthesis(SHS)process and the generation of low-oxygen Ti powder by electrodeoxidizing TiO_(x<1) powder at the cathode in molten CaCl_(2).The key intermediate steps were analyzed by XRD,SEM and electrochemical testing techniques.The results demonstrated that TiO_(x<1) powder(TiO_(0.325) and TiO_(0.97))was generated after acid leaching MgO in SHS products with TiO_(2)/Mg molar ratio of 1:2,and the TiO_(x<1) powder with 16.3 wt.%oxygen could be transformed into pure titanium powder with 0.121 wt.%oxygen by electrodeoxidation at a constant potential of−3.3 V for 10 h.The electrodeoxidation of TiO_(x<1) powder in CaCl_(2) molten salt follows the step-by-step deoxidation mode,and the lattice of TiO_(x<1) powder after electrodeoxidation shrinks.展开更多
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi...TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.展开更多
Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending rat...Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.The significance of the effect of each of the aforementioned parameters on the quality of the composite(assessed by measuring the compressive strength and wear resistance)was determined using a full-factorial design of experiments method.The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4.A lower Fe content caused the Fe(Cr)phase to melt and separate from the rest of the materials.展开更多
Influence of Fe addition on products of self-propagating high-temperature synthesis (SHS) reaction in 3Ti-Si-2C system was investigated in the present study. Without Fe addition, Ti5Si3 and TiC are the dominant phases...Influence of Fe addition on products of self-propagating high-temperature synthesis (SHS) reaction in 3Ti-Si-2C system was investigated in the present study. Without Fe addition, Ti5Si3 and TiC are the dominant phases along with a small amount of Ti3SiC2 phase and unreacted C left in the final products. As Fe content ranges from 10% to 30%, the products consist of TiC, Ti5Si3, Fe2Ti and unreacted C, but no trace of Ti3SiC2 phase is detected. Furthermore, the amounts of both Fe2Ti and C phases increase with Fe content increasing. Addition of Fe has a great effect on the reaction route and significantly restrains the formation of Ti3SiC2 during the combustion synthesis process, and therefore, the SHS is not an effective fabrication technique to synthesize the ternary Ti3SiC2 ceramic in either 3Ti-Si-2C or Fe-3Ti-Si-2C system. Besides, without Fe addition, Ti5Si3 presents as the coarse irregular appearance with an obviously sintered morphology. In contrast, the shape of Ti5Si3 exhibits more and more spherical (cobblestone-like) and the surface becomes increasingly smooth, because the amount of liquids formed during the SHS reaction increases with the increase of Fe content. On the other hand, with Fe content increasing from 0 to 30 wt.%, the particulate size of TiC decreases from more than 5 μm to 1 μm or less, mainly due to the fact that the combustion temperature decreases with the increase of Fe content in the preforms.展开更多
Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature,...Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).展开更多
The effects of preheating temperature and W powder size on the Self propagating High temperature Synthesis(SHS) of Ti W C system were studied. Preheated mixtures and the decrease of W powder size can accelerate the fo...The effects of preheating temperature and W powder size on the Self propagating High temperature Synthesis(SHS) of Ti W C system were studied. Preheated mixtures and the decrease of W powder size can accelerate the formation of (W,Ti)C powders. The uniphase (W,Ti)C (WC∶TiC=5∶5) powders with 0.32% free carbon were synthesized from Ti, W, C powders by SHS. The powder size of the product was 3~5 μm.展开更多
Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of ...Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.展开更多
Strontium titanate synroc samples were synthesized by self-propagating high-temperature synthesis (SHS). Sr directly took part in the synthesis process. As a result, the loading content issue is basically resolved. ...Strontium titanate synroc samples were synthesized by self-propagating high-temperature synthesis (SHS). Sr directly took part in the synthesis process. As a result, the loading content issue is basically resolved. The products were characterized by density, microhardness X-ray diffraction, and scanning electron microscopy (SEM/EDS). The leaching rate was measured by the method of PCT (product consistency test). The results indicate that the Sr^2+-SrTiO3 compound is of high density, low leach rate and high stability and the synthesis process is feasible in technology and economy. It can be concluded that the strontium titanate synroc is a perfect material to immobilize HLW.展开更多
According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically...According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically calculated and analyzed respectively. The results show that the reactions of Mg-TiO2 and Al-TiO2 are very easy to take place and the reaction of producing various suboxides of Ti may occur in Mg-TiO2 and Al-TiO2 reaction system;the adiabatic temperature of Mg-TiO2 becomes lower with increasing mass fraction of Mg. The adiabatic temperature is below 1 800 K when the mass fraction of excessive Mg exceeds 25%;The adiabatic temperature of Al-TiO2 also becomes lower with increasing mass fraction of Al,but it becomes higher with the preheat temperature increment. The adiabatic temperature plateau is the result of Ti melting endotherm;owing to the gasification of a great deal of Mg in Mg-TiO2 reaction process,Mg should be properly excessive in order to get Ti.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (No. 50025412)
文摘MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.
基金supported by the National Natural Science Foundation of China(Nos.52174333,U1908225,1702253)the Fundamental Research Funds for Central Universities,China(Nos.N182515007,N170908001,N2025004).
文摘An effective method was reported to prepare low-oxygen Ti powder,which included two experimental steps:the fast conversion of TiO_(2) to TiO_(x<1) powder by self-propagating high-temperature synthesis(SHS)process and the generation of low-oxygen Ti powder by electrodeoxidizing TiO_(x<1) powder at the cathode in molten CaCl_(2).The key intermediate steps were analyzed by XRD,SEM and electrochemical testing techniques.The results demonstrated that TiO_(x<1) powder(TiO_(0.325) and TiO_(0.97))was generated after acid leaching MgO in SHS products with TiO_(2)/Mg molar ratio of 1:2,and the TiO_(x<1) powder with 16.3 wt.%oxygen could be transformed into pure titanium powder with 0.121 wt.%oxygen by electrodeoxidation at a constant potential of−3.3 V for 10 h.The electrodeoxidation of TiO_(x<1) powder in CaCl_(2) molten salt follows the step-by-step deoxidation mode,and the lattice of TiO_(x<1) powder after electrodeoxidation shrinks.
基金The work was supported by the Foundation of Aerospace Innovation Fund and the National Natural Science Foundation of China(No.90505015)the Foundation of National Key Laboratory for Remanufacturing.
文摘TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.
文摘Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.The significance of the effect of each of the aforementioned parameters on the quality of the composite(assessed by measuring the compressive strength and wear resistance)was determined using a full-factorial design of experiments method.The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4.A lower Fe content caused the Fe(Cr)phase to melt and separate from the rest of the materials.
基金Support by the NNSFC (50671044 and 50531030)the NCET (06-0308)+1 种基金the Science and Technology Development Planning of Jilin Province (20070110)the Project 985-Automotive Engineering of Jilin University
文摘Influence of Fe addition on products of self-propagating high-temperature synthesis (SHS) reaction in 3Ti-Si-2C system was investigated in the present study. Without Fe addition, Ti5Si3 and TiC are the dominant phases along with a small amount of Ti3SiC2 phase and unreacted C left in the final products. As Fe content ranges from 10% to 30%, the products consist of TiC, Ti5Si3, Fe2Ti and unreacted C, but no trace of Ti3SiC2 phase is detected. Furthermore, the amounts of both Fe2Ti and C phases increase with Fe content increasing. Addition of Fe has a great effect on the reaction route and significantly restrains the formation of Ti3SiC2 during the combustion synthesis process, and therefore, the SHS is not an effective fabrication technique to synthesize the ternary Ti3SiC2 ceramic in either 3Ti-Si-2C or Fe-3Ti-Si-2C system. Besides, without Fe addition, Ti5Si3 presents as the coarse irregular appearance with an obviously sintered morphology. In contrast, the shape of Ti5Si3 exhibits more and more spherical (cobblestone-like) and the surface becomes increasingly smooth, because the amount of liquids formed during the SHS reaction increases with the increase of Fe content. On the other hand, with Fe content increasing from 0 to 30 wt.%, the particulate size of TiC decreases from more than 5 μm to 1 μm or less, mainly due to the fact that the combustion temperature decreases with the increase of Fe content in the preforms.
文摘Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).
文摘The effects of preheating temperature and W powder size on the Self propagating High temperature Synthesis(SHS) of Ti W C system were studied. Preheated mixtures and the decrease of W powder size can accelerate the formation of (W,Ti)C powders. The uniphase (W,Ti)C (WC∶TiC=5∶5) powders with 0.32% free carbon were synthesized from Ti, W, C powders by SHS. The powder size of the product was 3~5 μm.
基金the National Natural Science Foundation of China(No.59925207)the State Key Lab-oratory of New Nonferrous Metal Materials,Gansu University of Technology(No.2004016)for their financial support to this work.
文摘Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.
基金This work was financially supported by the National Natural Science Foundation of China (No.20476008).
文摘Strontium titanate synroc samples were synthesized by self-propagating high-temperature synthesis (SHS). Sr directly took part in the synthesis process. As a result, the loading content issue is basically resolved. The products were characterized by density, microhardness X-ray diffraction, and scanning electron microscopy (SEM/EDS). The leaching rate was measured by the method of PCT (product consistency test). The results indicate that the Sr^2+-SrTiO3 compound is of high density, low leach rate and high stability and the synthesis process is feasible in technology and economy. It can be concluded that the strontium titanate synroc is a perfect material to immobilize HLW.
文摘According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically calculated and analyzed respectively. The results show that the reactions of Mg-TiO2 and Al-TiO2 are very easy to take place and the reaction of producing various suboxides of Ti may occur in Mg-TiO2 and Al-TiO2 reaction system;the adiabatic temperature of Mg-TiO2 becomes lower with increasing mass fraction of Mg. The adiabatic temperature is below 1 800 K when the mass fraction of excessive Mg exceeds 25%;The adiabatic temperature of Al-TiO2 also becomes lower with increasing mass fraction of Al,but it becomes higher with the preheat temperature increment. The adiabatic temperature plateau is the result of Ti melting endotherm;owing to the gasification of a great deal of Mg in Mg-TiO2 reaction process,Mg should be properly excessive in order to get Ti.