The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and co...The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
Cf/Al composites and TiAl alloys were joined by laser ignited self-propagating high-temperature synthesis(SHS) with Ni-Al-Ti interlayer. The effect of Ti-Al content on interfacial microstructure and mechanical prope...Cf/Al composites and TiAl alloys were joined by laser ignited self-propagating high-temperature synthesis(SHS) with Ni-Al-Ti interlayer. The effect of Ti-Al content on interfacial microstructure and mechanical properties of the joints was investigated. Localized melt of the substrates occurred in the joints. γ-Ni0.35Al0.30Ti0.35, NiA l3 and Ni2Al3 reaction layers formed adjacent to the substrates. Joint flaws, such as pores and cracks, made the joint density decrease and worked as the fracture source, which led to the sharp decline of joint strength. Additive Ti-Al increased joint density and strengthened the interlayer adhesion to Cf/Al. The joint flaws could be controlled by changing the Ti-Al content. When the Ti-Al content was 0.1, the joint was free of cracks with high density and reached the maximum shear strength of 24.12 MPa.展开更多
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi...TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.展开更多
The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scannin...The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.展开更多
Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature,...Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).展开更多
ZrB2 ceramics were prepared by self-propagating high-temperature synthesis(SHS) and were sintered by hot pressing(HP).The effects of the granularities and doses of raw materials in Zr-B2O3-Mgon SHS process and pro...ZrB2 ceramics were prepared by self-propagating high-temperature synthesis(SHS) and were sintered by hot pressing(HP).The effects of the granularities and doses of raw materials in Zr-B2O3-Mgon SHS process and product were investigated.XRD and combustion temperature curves prove that the ideal SHS reactants of Zr-B2O3-Mg are 50μm Zr powder,75μm B2O3 powder and 400μm Mg powder with 45% excessive.The particle sizes of SHS product,acid-leached product,sintered product are 2-5μm,0.5-2μm,2-10μm respectively.Chemical analysis indicates that the acid-leached product consists of ZrB2(94.59%),ZrO2(3.87%),and H3BO3(1.54%),The sintered product has a relative density of 95.4%.展开更多
In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM...In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM) was used for extinguishing the propagating combustion wave, and the microstructures on the quenched sample were observed with scanning electron microscope (SEM) and analyzed with energy dispersive spectrometry (EDS). In addition, the combustion temperature of the reaction was measured, and the phase constituent of the synthesized product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started from melting of the Al particles, and the melting resulted in dissolving of the Ti particles and forming of Al3Ti grains. As the Al liquid was depleted, the combustion reaction proceeded through solid-state diffusion between the solid Al3Ti and the solid Ti. This led to the forming of TiAl and Ti3Al diffusing layers. In addition, the combustion reaction is incomplete besides TiAl, there are a large amount of Ti3Al and TiAl3 and a small amount of Ti in the final product. This incompleteness chiefly results from the using of coarser Ti powder.展开更多
Emission in the X-ray and ultraviolet (200-300 nanometers) region of spectrum is found out during combustion of heterogeneous systems with the formation of condensed products, and pulses from microwave emission with...Emission in the X-ray and ultraviolet (200-300 nanometers) region of spectrum is found out during combustion of heterogeneous systems with the formation of condensed products, and pulses from microwave emission with short duration are recorded as well. Combustion of a Ti-B powder system showed that self-propagating high-temperature synthesis (SHS) is accompanied by two types of X-ray radiation. Radiation of the first type has the maximum quantum energy - 5 keV. It is supposed that this type is caused by micro-breakdowns due to the charge separation in combustion products. Runaway electrons and soft X-ray radiation are generated due to the concentration of electric field on microparticles during breakdown. Radiation of the second type has the quantum energy up to - 15 keV. It is supposed that it is caused by exoemission of photons. UV radiation in the region of 200-300 nm is recorded during SHS in different gases (He, Ar, N2). This radiation is shown to have the highest intensity in helium at the pressure - 25 x 103 Pa.展开更多
High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr...High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.展开更多
The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of...The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.展开更多
In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion tem...In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion temperature Tadof 2,467.45 K indicates that the2Ti–0Cr–Al–C is the highest exothermic reaction system in the Ti–Cr–Al–C system. The adiabatic combustion temperature decreases with the increase of the Cr content. And a higher exothermal reaction would result in higher porosity which is induced by the high temperature and pressure of C reducing atmosphere and Al vapor. Combustion characterization of the products shows that the geometrical alternating layers result in the high exothermal reaction and flame-front propagating velocity. The higher the Tadis, the thinner the layer is. To demonstrate the process of the microscopic characterization and show the detailed combustion process closed to the experimental observations, the flame-front propagating velocity and temperature distribution were simulated numerically.展开更多
Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at differen...Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at different sintering temperatures and additive contents. The change of phase compositions, secondary phase distributions and grain morphologies during sintering process were investigated. It is shown that fully dense ceramics using AIN powder prepared by SHS method can be obtained when the sintering temperature is above 1830 ℃. Both Y2O3content and sintering temperature have an important influence on the formation of Y-Al-O phase and grain shape. When Y2O3content is identified, the grain morphology converts from polyhedron into sphere-like shape with the rise of sintering temperature. At a certain sintering temperature,the grain size decreases with the increase in Y2O3content. The influencing mechanisms of different YAl-O secondary phases and sintering temperatures on the grain size and morphology were also discussed based on the experimental results.展开更多
In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the...In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively.展开更多
Porous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance,but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering...Porous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance,but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering limit its further application.Herein,as a three-in-one solution for the above issues,for the first time we develop a novel approach that integrates the merits of gelcasting-SHS(self-propagating high-temperature synthesis)to prepare porous Si_(3)N_(4)ceramics to simultaneously achieve high porosity,high strength,high toughness,and low thermal conductivity across a wide temperature range.By regulating the solid content,porous Si_(3)N_(4)ceramics with homogeneous pore structure are obtained,where the pore size falls inbetween 1.61 and 4.41 pm,and the elongated grains are interlaced and interlocked to form micron-sized coherent interconnected pores.At the same time,porous Si_(3)N_(4)ceramics with porosity of 67.83%to 78.03%are obtained,where the compressive strength reaches 11.79 to 47.75 MPa and fracture toughness reaches 1.20 to 6.71 MPa-m1/2.展开更多
Ni-doped BiFeO_(3) powders with the composition BiFe_(1-x)Ni_(x)O_(3)(x=0.05,0.1 and 0.15)were prepared by a self-propagating high-temperature synthesis(SHS),using metal nitrates as oxidizers and glycine as fuel.The X...Ni-doped BiFeO_(3) powders with the composition BiFe_(1-x)Ni_(x)O_(3)(x=0.05,0.1 and 0.15)were prepared by a self-propagating high-temperature synthesis(SHS),using metal nitrates as oxidizers and glycine as fuel.The X-ray diffraction(XRD)patterns depict that Ni-doped BiFeO_(3) ceramics crystallize in a rhombhohedral phase.The scanning electron micrographs of Ni-doped BiFeO_(3) ceramics show a dense morphology with interconnected structure.It is found that,the room-temperature magnetization measurements in Ni-incorporated BiFeO_(3) ceramics give rise to nonzero magnetization.The magnetization of Ni-doped BiFeO_(3) ceramics is significantly enhanced when Ni doping concentration reaches to x=0.1 at 5 K.The variations of dielectric constant with temperature in BiFe_(0.95)Ni_(0.05)O_(3),BiFe_(0.9)Ni_(0.1)O_(3) and BiFe_(0.85)Ni_(0.15)O_(3) samples exhibit clear dielectric anomalies approximately around 450℃,425℃and 410℃respectively,which correspond to antiferromagnetic to paramagnetic phase transition of the parent compound BiFeO_(3).展开更多
A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic M...A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic MgO and Gd_(2)O_(3) phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200℃.Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering(SPS)at 1140℃and 60 MPa.The in-line transmittance of 1 mm thick MgO-Gd_(2)O_(3) ceramics exceeded 70%in the range of 4–5 mm and reached a maximum of 77%at a wavelength of 5.3 mm.The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa,while the fracture toughness(KIC)amounted to 2.0±0.5МPa·m1/2.These characteristics demonstrate that obtained composite MgO-Gd_(2)O_(3) ceramic is a promising material for protective infra-red(IR)windows.展开更多
The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investi...The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
In order to prepare high quality Mo(Si,Al)2 feedstock characterized with C40 phase, higher Al doping amount andexcellent flowability, Mo(Si1-x,Alx)2 with different Al contents (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) were...In order to prepare high quality Mo(Si,Al)2 feedstock characterized with C40 phase, higher Al doping amount andexcellent flowability, Mo(Si1-x,Alx)2 with different Al contents (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) were synthesized by self-propagatinghigh-temperature synthesis first and Mo(Si0.6,Al0.4)2 was confirmed as the suitable material through X-ray diffraction analysis. Aseries of tests with different parameters of induction plasma spheroidization were applied to improving the flowability of feedstock.Mo(Si,Al)2 feedstock with excellent flowability (26.2 s/50 g) was prepared through adding hydrogen into sheath gas and decreasingthe powder feeding rate. The composition segregation occurred in the spheroidized powder after Al consumption and oxidation. Theinhomogeneous structure of the same particle was caused by the asymmetric heating and cooling when particle passed through theplasma jet.展开更多
基金Project (2012CB933600) supported by the National Basic Research Program of ChinaProject (2011AA030104) supported by the National High-tech Research and Development Program of ChinaProject (JC200903170498A) supported by the Science and Technology Research Foundation of Shenzhen Bureau of Science and Technology & Information, China
文摘The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金Project(51075101)supported by the National Natural Science Foundation of China
文摘Cf/Al composites and TiAl alloys were joined by laser ignited self-propagating high-temperature synthesis(SHS) with Ni-Al-Ti interlayer. The effect of Ti-Al content on interfacial microstructure and mechanical properties of the joints was investigated. Localized melt of the substrates occurred in the joints. γ-Ni0.35Al0.30Ti0.35, NiA l3 and Ni2Al3 reaction layers formed adjacent to the substrates. Joint flaws, such as pores and cracks, made the joint density decrease and worked as the fracture source, which led to the sharp decline of joint strength. Additive Ti-Al increased joint density and strengthened the interlayer adhesion to Cf/Al. The joint flaws could be controlled by changing the Ti-Al content. When the Ti-Al content was 0.1, the joint was free of cracks with high density and reached the maximum shear strength of 24.12 MPa.
基金The work was supported by the Foundation of Aerospace Innovation Fund and the National Natural Science Foundation of China(No.90505015)the Foundation of National Key Laboratory for Remanufacturing.
文摘TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.
基金This work was financially supported by the Natural Science Foundation of Shaanxi Province, China (No.2004E107)
文摘The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.
文摘Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).
文摘ZrB2 ceramics were prepared by self-propagating high-temperature synthesis(SHS) and were sintered by hot pressing(HP).The effects of the granularities and doses of raw materials in Zr-B2O3-Mgon SHS process and product were investigated.XRD and combustion temperature curves prove that the ideal SHS reactants of Zr-B2O3-Mg are 50μm Zr powder,75μm B2O3 powder and 400μm Mg powder with 45% excessive.The particle sizes of SHS product,acid-leached product,sintered product are 2-5μm,0.5-2μm,2-10μm respectively.Chemical analysis indicates that the acid-leached product consists of ZrB2(94.59%),ZrO2(3.87%),and H3BO3(1.54%),The sintered product has a relative density of 95.4%.
文摘In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM) was used for extinguishing the propagating combustion wave, and the microstructures on the quenched sample were observed with scanning electron microscope (SEM) and analyzed with energy dispersive spectrometry (EDS). In addition, the combustion temperature of the reaction was measured, and the phase constituent of the synthesized product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started from melting of the Al particles, and the melting resulted in dissolving of the Ti particles and forming of Al3Ti grains. As the Al liquid was depleted, the combustion reaction proceeded through solid-state diffusion between the solid Al3Ti and the solid Ti. This led to the forming of TiAl and Ti3Al diffusing layers. In addition, the combustion reaction is incomplete besides TiAl, there are a large amount of Ti3Al and TiAl3 and a small amount of Ti in the final product. This incompleteness chiefly results from the using of coarser Ti powder.
文摘Emission in the X-ray and ultraviolet (200-300 nanometers) region of spectrum is found out during combustion of heterogeneous systems with the formation of condensed products, and pulses from microwave emission with short duration are recorded as well. Combustion of a Ti-B powder system showed that self-propagating high-temperature synthesis (SHS) is accompanied by two types of X-ray radiation. Radiation of the first type has the maximum quantum energy - 5 keV. It is supposed that this type is caused by micro-breakdowns due to the charge separation in combustion products. Runaway electrons and soft X-ray radiation are generated due to the concentration of electric field on microparticles during breakdown. Radiation of the second type has the quantum energy up to - 15 keV. It is supposed that it is caused by exoemission of photons. UV radiation in the region of 200-300 nm is recorded during SHS in different gases (He, Ar, N2). This radiation is shown to have the highest intensity in helium at the pressure - 25 x 103 Pa.
基金Funded by the Program for New Century Excellent Talents in University(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)the Self-determined and Innovative Research Funds of WUT(Nos.136643002 and No.2013IV058)
文摘High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.
基金financially supported by the National Natural Science Foundation of China(Grant No.51075101)
文摘The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.
基金financially supported by the National Natural Science Foundation of China (Nos. 11302068 and 51172057)China Postdoctoral Science Foundation (No. 2013M541261)
文摘In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion temperature Tadof 2,467.45 K indicates that the2Ti–0Cr–Al–C is the highest exothermic reaction system in the Ti–Cr–Al–C system. The adiabatic combustion temperature decreases with the increase of the Cr content. And a higher exothermal reaction would result in higher porosity which is induced by the high temperature and pressure of C reducing atmosphere and Al vapor. Combustion characterization of the products shows that the geometrical alternating layers result in the high exothermal reaction and flame-front propagating velocity. The higher the Tadis, the thinner the layer is. To demonstrate the process of the microscopic characterization and show the detailed combustion process closed to the experimental observations, the flame-front propagating velocity and temperature distribution were simulated numerically.
基金financially supported by the International Cooperation Project of Zhejiang Province (No. 2012C24007)
文摘Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at different sintering temperatures and additive contents. The change of phase compositions, secondary phase distributions and grain morphologies during sintering process were investigated. It is shown that fully dense ceramics using AIN powder prepared by SHS method can be obtained when the sintering temperature is above 1830 ℃. Both Y2O3content and sintering temperature have an important influence on the formation of Y-Al-O phase and grain shape. When Y2O3content is identified, the grain morphology converts from polyhedron into sphere-like shape with the rise of sintering temperature. At a certain sintering temperature,the grain size decreases with the increase in Y2O3content. The influencing mechanisms of different YAl-O secondary phases and sintering temperatures on the grain size and morphology were also discussed based on the experimental results.
基金supported by the National Natural Science Foundation of China(Nos.51672228 and 51202203)the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(No.11zxfk26)+1 种基金the Young Outstanding Scientist Fund of Southwest University of Science and Technology(No.13zx9108)the Postgraduate Innovation Fund Project by Southwest University of Science and Technology(No.16ycx010)
文摘In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively.
基金supports from the National Natural Science Foundation of China(NSFC,Nos.51872159 and 52072381).
文摘Porous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance,but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering limit its further application.Herein,as a three-in-one solution for the above issues,for the first time we develop a novel approach that integrates the merits of gelcasting-SHS(self-propagating high-temperature synthesis)to prepare porous Si_(3)N_(4)ceramics to simultaneously achieve high porosity,high strength,high toughness,and low thermal conductivity across a wide temperature range.By regulating the solid content,porous Si_(3)N_(4)ceramics with homogeneous pore structure are obtained,where the pore size falls inbetween 1.61 and 4.41 pm,and the elongated grains are interlaced and interlocked to form micron-sized coherent interconnected pores.At the same time,porous Si_(3)N_(4)ceramics with porosity of 67.83%to 78.03%are obtained,where the compressive strength reaches 11.79 to 47.75 MPa and fracture toughness reaches 1.20 to 6.71 MPa-m1/2.
基金This study was supported by UGC-SAP,DRS Phase II of Indiathe author Y.A.Chaudhari is very much thankful for the funding agency.
文摘Ni-doped BiFeO_(3) powders with the composition BiFe_(1-x)Ni_(x)O_(3)(x=0.05,0.1 and 0.15)were prepared by a self-propagating high-temperature synthesis(SHS),using metal nitrates as oxidizers and glycine as fuel.The X-ray diffraction(XRD)patterns depict that Ni-doped BiFeO_(3) ceramics crystallize in a rhombhohedral phase.The scanning electron micrographs of Ni-doped BiFeO_(3) ceramics show a dense morphology with interconnected structure.It is found that,the room-temperature magnetization measurements in Ni-incorporated BiFeO_(3) ceramics give rise to nonzero magnetization.The magnetization of Ni-doped BiFeO_(3) ceramics is significantly enhanced when Ni doping concentration reaches to x=0.1 at 5 K.The variations of dielectric constant with temperature in BiFe_(0.95)Ni_(0.05)O_(3),BiFe_(0.9)Ni_(0.1)O_(3) and BiFe_(0.85)Ni_(0.15)O_(3) samples exhibit clear dielectric anomalies approximately around 450℃,425℃and 410℃respectively,which correspond to antiferromagnetic to paramagnetic phase transition of the parent compound BiFeO_(3).
基金funded by the Russian Science Foundation(Research Project No.19-73-10127)。
文摘A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic MgO and Gd_(2)O_(3) phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200℃.Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering(SPS)at 1140℃and 60 MPa.The in-line transmittance of 1 mm thick MgO-Gd_(2)O_(3) ceramics exceeded 70%in the range of 4–5 mm and reached a maximum of 77%at a wavelength of 5.3 mm.The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa,while the fracture toughness(KIC)amounted to 2.0±0.5МPa·m1/2.These characteristics demonstrate that obtained composite MgO-Gd_(2)O_(3) ceramic is a promising material for protective infra-red(IR)windows.
基金financially supported by the National Natural Science Foundation of China(Nos.51072104 and 51272141)Tai Shan Scholars Project of Shandong Province,China(No.ts20110828)
文摘The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
基金Project (20101101120030) supported by International Graduate Exchange Program of Beijing Institute of Technologysupported by the Research Fund for the doctoral Program of Higher Education of China
文摘In order to prepare high quality Mo(Si,Al)2 feedstock characterized with C40 phase, higher Al doping amount andexcellent flowability, Mo(Si1-x,Alx)2 with different Al contents (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) were synthesized by self-propagatinghigh-temperature synthesis first and Mo(Si0.6,Al0.4)2 was confirmed as the suitable material through X-ray diffraction analysis. Aseries of tests with different parameters of induction plasma spheroidization were applied to improving the flowability of feedstock.Mo(Si,Al)2 feedstock with excellent flowability (26.2 s/50 g) was prepared through adding hydrogen into sheath gas and decreasingthe powder feeding rate. The composition segregation occurred in the spheroidized powder after Al consumption and oxidation. Theinhomogeneous structure of the same particle was caused by the asymmetric heating and cooling when particle passed through theplasma jet.