Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-...Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a...Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.展开更多
The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles ...The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.展开更多
The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that t...This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of ...BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers...We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers in perceiving their hydrodynamic environments under dark condition.We train different neural networks to classify wake structures by using the streamwise velocity component,the crosswise velocity component,the vorticity and the combination of three flow variables,respectively.It is found that the neural networks trained using the two velocity components perform well in identifying the wake types,whereas the neural network trained using the vorticity suffers from a high rate of misclassification.When the neural network is trained using the combination of all three flow variables,a remarkably high accuracy in wake classification can be achieved.The results of this study can be helpful to the design of flow sensory systems in robotic underwater vehicles.展开更多
Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent bou...Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction.In this paper,the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR)techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB).A model with the following dimensions was constructed:length L=2000 mm,breadth B=521.60 mm,and draft T=52.50 mm.The ship model was towed using standard towing tank experimental parameters.The speed was varied over the Froude number range 0.11–0.31.The air layer flow rate was varied at 80,85,and 90 standard liters per minute(SLPM)and the microbubble injection coefficient over the range 0.20–0.60.The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%.Based on the characteristics of the SPB,which operates at low speed,the optimum air lubrication type to reduce resistance in this instance is ALDR.展开更多
Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to dat...Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.展开更多
The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained b...The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity wi...We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity with small self-propelled force,whereas particles always move in the positive direction with large self-propelled force.The introduction of phase lag leads particles to follow circular orbits and suppress the polar motion.In addition,this can adjust the direction of particle motion.There exists an optimal value of polar interaction strength at which the rectification is maximal.These results open the way for many application processes,such as spatial sorting of particles mixture and separation based on their physical properties.展开更多
A new type of self-propelled barge was designed specifically for use on the Chishui River. This paper presents experimental results of its performance from tests in water of different depths,while bearing different lo...A new type of self-propelled barge was designed specifically for use on the Chishui River. This paper presents experimental results of its performance from tests in water of different depths,while bearing different loads. For test purposes,one of the best self-propelled barges from the Chishui River was used as a performance reference. The comparison showed that the new design has better maneuvering performance.展开更多
A minimal cellular automaton model is introduced to describe the collective motion of self-propelled particles on two-dimensional square lattice. The model features discretization of directional and positional spaces ...A minimal cellular automaton model is introduced to describe the collective motion of self-propelled particles on two-dimensional square lattice. The model features discretization of directional and positional spaces and single-particle occupation on one lattice site. Contrary to the Vicsek model and its variants, our model exhibits the nonvanishing optimal noise. When the particle density increases, the collective motion is promoted with optimal noise strength and reduced with noise strength out of optimal region. In addition, when the square lattice undergoes edge percolation process, no abrupt change of alignment behaviors is observed at the critical point of percolation.展开更多
In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel...In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits highvelocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金Supported by National Natural Science Foundation of China(31401296)Independent Innovation Foundation of Science and Technology in Jiangsu Province(CX(14)2101)
文摘Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金supported by the National Natural Science Foundation of China(10172095 and 10672183)
文摘Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12372251 and 12132015)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.2023YW69).
文摘The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles.
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12132015 and 11972336)。
文摘This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
文摘BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金the National Natural Science Foundation of China(Grants 11772338 and 11372331)Chinese Academy of Sciences(Grants XDB22040104 and XDA22040203).
文摘We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers in perceiving their hydrodynamic environments under dark condition.We train different neural networks to classify wake structures by using the streamwise velocity component,the crosswise velocity component,the vorticity and the combination of three flow variables,respectively.It is found that the neural networks trained using the two velocity components perform well in identifying the wake types,whereas the neural network trained using the vorticity suffers from a high rate of misclassification.When the neural network is trained using the combination of all three flow variables,a remarkably high accuracy in wake classification can be achieved.The results of this study can be helpful to the design of flow sensory systems in robotic underwater vehicles.
文摘Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction.In this paper,the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR)techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB).A model with the following dimensions was constructed:length L=2000 mm,breadth B=521.60 mm,and draft T=52.50 mm.The ship model was towed using standard towing tank experimental parameters.The speed was varied over the Froude number range 0.11–0.31.The air layer flow rate was varied at 80,85,and 90 standard liters per minute(SLPM)and the microbubble injection coefficient over the range 0.20–0.60.The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%.Based on the characteristics of the SPB,which operates at low speed,the optimum air lubrication type to reduce resistance in this instance is ALDR.
文摘Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.
文摘The experimental modal analysis of the selected self-propelled gun was completed to obtain its modal frequency distribution and modes by using an operational modal analysis experimental technique.The result obtained by the method was compared with that obtained by the traditional method.It indicates that the two results are in good agreement.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075090)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)+2 种基金the Science and Technology Program of Guangzhou City(Grant No.2019050001)the Natural Science Foundation of Guangdong Province,China(Grant No.2017A030313029)the Major Basic Research Project of Guangdong Province,China(Grant No.2017KZDXM024)。
文摘We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity with small self-propelled force,whereas particles always move in the positive direction with large self-propelled force.The introduction of phase lag leads particles to follow circular orbits and suppress the polar motion.In addition,this can adjust the direction of particle motion.There exists an optimal value of polar interaction strength at which the rectification is maximal.These results open the way for many application processes,such as spatial sorting of particles mixture and separation based on their physical properties.
基金Supported by the Western China’s transportation technology Foundation under Grant No. 200332895144.
文摘A new type of self-propelled barge was designed specifically for use on the Chishui River. This paper presents experimental results of its performance from tests in water of different depths,while bearing different loads. For test purposes,one of the best self-propelled barges from the Chishui River was used as a performance reference. The comparison showed that the new design has better maneuvering performance.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)the National Natural Science Foundation of China(Grant No.12090054)。
文摘A minimal cellular automaton model is introduced to describe the collective motion of self-propelled particles on two-dimensional square lattice. The model features discretization of directional and positional spaces and single-particle occupation on one lattice site. Contrary to the Vicsek model and its variants, our model exhibits the nonvanishing optimal noise. When the particle density increases, the collective motion is promoted with optimal noise strength and reduced with noise strength out of optimal region. In addition, when the square lattice undergoes edge percolation process, no abrupt change of alignment behaviors is observed at the critical point of percolation.
基金supported by the National Natural Science Foundation of China(Grant No.11632016)
文摘In this paper, a model that combines the lattice Boltzmann method with the singularity distribution method is proposed to simulate a self-propelled particle swimming(exhibiting translation and rotation) in a channel flow. The results show that the velocity distribution for a self-propelled particle swimming deviates from a Maxwellian distribution and exhibits highvelocity tails. The influence of an eccentric potential doublet on the translation velocity of the particle is significant. The velocity decay process can be described using a double exponential model form. No large differences in the velocity distribution were observed for different translation Reynolds numbers, rotation Reynolds numbers, or regular intervals.