In the present study,self-propelled cabbage/cauliflower harvester was designed,developed and evaluated.The machine consisted of different components like engine,frame,shearing(cutting)unit and power transmission unit....In the present study,self-propelled cabbage/cauliflower harvester was designed,developed and evaluated.The machine consisted of different components like engine,frame,shearing(cutting)unit and power transmission unit.The power transmission unit consisted of main clutch,shearing blade operating clutch,belt drive unit,chain and sprocket drive,universal joint and cutter blade assembly.The main working principle of harvester is based on shearing of crop stem against high-speed rotating blade.The power from the engine is transmitted by belt-pulley drive unit to transmission shaft on which chain and sprocket is mounted on one side and then power is transmitted to shearing blade coupling with the help of a stationary pulley and fixed socket.Average mean head diameter of the selected cabbage and cauliflower was 89.5±15.24 mm and 107.5±15.24 mm,respectively.Average mean stem(plant)diameter of the selected cabbage and cauliflower was 18±4.85 mm and 21.5±3.08 mm,respectively.The shearing force increased with increase in diameter of stem.The optimum performance of the machine was achieved when it was operated at 1.5 km/h forward speed and the shearing blade moving at speed of 147 rpm.The mean field capacity for developed prototype was observed as 0.063 ha/h and 0.053 in case of cabbage and cauliflower,respectively with field efficiency of 91.97 and 90.48%.The average head damage was negligible(0.15%)for both the crops.The average untrimmed percentage with developed harvester was 3.2 and 3.0%in case of cabbage and cauliflower crop,respectively.The developed machine helps to increase the field capacity in cabbage/cauliflower harvesting due to 7-times more capacity and 50%cheaper compared to traditional method of cabbage/cauliflower harvesting.At the operating condition of forward speed(1.5 km/h)and shearing blade speed(147 rpm),the machine could harvest 0.5 ha of cabbage and 0.42 ha of cauliflower farm per day of 8-h.This same task would have required between 15 labour per day if entirely done manually.展开更多
Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.M...Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.展开更多
The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use effici...The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.展开更多
文摘In the present study,self-propelled cabbage/cauliflower harvester was designed,developed and evaluated.The machine consisted of different components like engine,frame,shearing(cutting)unit and power transmission unit.The power transmission unit consisted of main clutch,shearing blade operating clutch,belt drive unit,chain and sprocket drive,universal joint and cutter blade assembly.The main working principle of harvester is based on shearing of crop stem against high-speed rotating blade.The power from the engine is transmitted by belt-pulley drive unit to transmission shaft on which chain and sprocket is mounted on one side and then power is transmitted to shearing blade coupling with the help of a stationary pulley and fixed socket.Average mean head diameter of the selected cabbage and cauliflower was 89.5±15.24 mm and 107.5±15.24 mm,respectively.Average mean stem(plant)diameter of the selected cabbage and cauliflower was 18±4.85 mm and 21.5±3.08 mm,respectively.The shearing force increased with increase in diameter of stem.The optimum performance of the machine was achieved when it was operated at 1.5 km/h forward speed and the shearing blade moving at speed of 147 rpm.The mean field capacity for developed prototype was observed as 0.063 ha/h and 0.053 in case of cabbage and cauliflower,respectively with field efficiency of 91.97 and 90.48%.The average head damage was negligible(0.15%)for both the crops.The average untrimmed percentage with developed harvester was 3.2 and 3.0%in case of cabbage and cauliflower crop,respectively.The developed machine helps to increase the field capacity in cabbage/cauliflower harvesting due to 7-times more capacity and 50%cheaper compared to traditional method of cabbage/cauliflower harvesting.At the operating condition of forward speed(1.5 km/h)and shearing blade speed(147 rpm),the machine could harvest 0.5 ha of cabbage and 0.42 ha of cauliflower farm per day of 8-h.This same task would have required between 15 labour per day if entirely done manually.
基金supported by the System for Poultry Production Technology,Beijing Innovation Research Team of Modern Agriculture(BAIC04–2016)
文摘Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD29B03)the 111 Project (B12007)the Shaanxi Technology Project, China (2010K02-08-2)
文摘The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.