The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnec...Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.展开更多
This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that t...This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.展开更多
In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher...In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher and his collaboration work Cardenio.Be more specific,the locomotion routes can be exemplified in Möbius strip,a rhizome system,a reciprocating juxtaposition between the foreground and the background,either of which finally runs to an annular schema.The annular in narration corresponds with The Globe theater and the round world.Shakespeare may express his expectation and prospect for the uprising bourgeoise and the newly found world by the resurrection theme in literature.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-...Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.展开更多
To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent ...To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.展开更多
Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducte...Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...展开更多
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m...There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.展开更多
The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still nee...The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.展开更多
C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences...C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences between these two mice strains in the persistence of cocaine-induced conditioned place preference (CPP), as well as the locomotion and social behaviors after the 24-hour withdrawal from a four-day cocaine (20 mg/kg/day) administration were investigated. The results showed that the cocaine-induced CPP persisted over two weeks in C57BL/6J mice, while it diminished within one week among BALB/cJ mice. After 24-hours of cocaine withdrawal, high levels of locomotion as well as low levels of social interaction and aggressive behavior were found in C57BL/6J mice, but no significant changes were found in BALB/cJ mice, indicating that cocaine-induced CPP persistence, locomotion and social behavior are not consistent between these two strains, and that overall C57BL/6J mice are more susceptible to cocaine than BALB/cJ mice at the tested doses.展开更多
The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h...The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h^-1 and 8.5 km·h^-1. By processing the acquired data, the joint trajectories of the dogs' hind limbs were computed and a time series analysis was conducted. Joint angle-angle diagrams were obtained and the Lyapunov exponents were computed. Results show that the stability decreased when speed increased, which can be attributed to the decrease in the stance phase respect to the swing phase when speed is increased. Results also show that the dogs changed gait during the tests, namely walking in the range of 4 km·h^-1 to 7 km·h^-1 and pacing at 8.5 km·h^-1 A significant drop in stability was observed from walking to pacing.展开更多
To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50...To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50 of P. guiUelmi for 7 and 14 d were 4285+339 mg/kg and 3207+248 mg/kg, which shows P. guillelmi can tolerate a higher concentration of lead nitrate. The average weight of the surviving earthworms decreased at concentration of 2800 mg Pb/kg soil, and the locomotor ability of earthworms exposed to a range of soil Pb concentrations showed a general decrease with increasing Pb concentrations. We also presented data depicting the sperm morphology of earthworms, which shows potential as a sensitive biomarker for measuring the effects of heavy metal on reproduction.展开更多
While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be contro...While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion展开更多
Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degr...Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.展开更多
A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs)....A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation re, suits show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup, stop, forward swimming, backward swimming, turn right and turn left.展开更多
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst...As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.展开更多
We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers...We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers in perceiving their hydrodynamic environments under dark condition.We train different neural networks to classify wake structures by using the streamwise velocity component,the crosswise velocity component,the vorticity and the combination of three flow variables,respectively.It is found that the neural networks trained using the two velocity components perform well in identifying the wake types,whereas the neural network trained using the vorticity suffers from a high rate of misclassification.When the neural network is trained using the combination of all three flow variables,a remarkably high accuracy in wake classification can be achieved.The results of this study can be helpful to the design of flow sensory systems in robotic underwater vehicles.展开更多
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a...Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.展开更多
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.
文摘Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12132015 and 11972336)。
文摘This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.
基金Chongqing Social Science Fund Project“The Ethical Topology of Shakespeare’s Histories”(2020WYZX07).
文摘In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher and his collaboration work Cardenio.Be more specific,the locomotion routes can be exemplified in Möbius strip,a rhizome system,a reciprocating juxtaposition between the foreground and the background,either of which finally runs to an annular schema.The annular in narration corresponds with The Globe theater and the round world.Shakespeare may express his expectation and prospect for the uprising bourgeoise and the newly found world by the resurrection theme in literature.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
基金Supported by National Natural Science Foundation of China(31401296)Independent Innovation Foundation of Science and Technology in Jiangsu Province(CX(14)2101)
文摘Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.
文摘To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.
基金the Southeast Uni-versity Foundation for Excellent Young Scholars (No.4023001013)the NIH,National Center for Foundation from Research Resource,USA
文摘Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...
基金the National Natural Science Foundation of China (Grant No. 50579007)
文摘There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.
基金Acknowledgement This work was supported by the National Natural Science Foundation (Grant No. 50635030).
文摘The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.
基金Foundation items: This research was supported by the National Nat- ural Science Foundation of China (31260513), the National Natural Science Foundation of Ningxia (NZ14077) and the Science Foundation of Beifang University of Nationalities (2012Y052)
文摘C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences between these two mice strains in the persistence of cocaine-induced conditioned place preference (CPP), as well as the locomotion and social behaviors after the 24-hour withdrawal from a four-day cocaine (20 mg/kg/day) administration were investigated. The results showed that the cocaine-induced CPP persisted over two weeks in C57BL/6J mice, while it diminished within one week among BALB/cJ mice. After 24-hours of cocaine withdrawal, high levels of locomotion as well as low levels of social interaction and aggressive behavior were found in C57BL/6J mice, but no significant changes were found in BALB/cJ mice, indicating that cocaine-induced CPP persistence, locomotion and social behavior are not consistent between these two strains, and that overall C57BL/6J mice are more susceptible to cocaine than BALB/cJ mice at the tested doses.
基金Acknowledgement This work was supported by the National Science Foundation of China (Grant No. 50875108), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
文摘The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h^-1 and 8.5 km·h^-1. By processing the acquired data, the joint trajectories of the dogs' hind limbs were computed and a time series analysis was conducted. Joint angle-angle diagrams were obtained and the Lyapunov exponents were computed. Results show that the stability decreased when speed increased, which can be attributed to the decrease in the stance phase respect to the swing phase when speed is increased. Results also show that the dogs changed gait during the tests, namely walking in the range of 4 km·h^-1 to 7 km·h^-1 and pacing at 8.5 km·h^-1 A significant drop in stability was observed from walking to pacing.
基金supported by the Natural Science Fund of Zhejiang Province (No. Y506255)
文摘To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50 of P. guiUelmi for 7 and 14 d were 4285+339 mg/kg and 3207+248 mg/kg, which shows P. guillelmi can tolerate a higher concentration of lead nitrate. The average weight of the surviving earthworms decreased at concentration of 2800 mg Pb/kg soil, and the locomotor ability of earthworms exposed to a range of soil Pb concentrations showed a general decrease with increasing Pb concentrations. We also presented data depicting the sperm morphology of earthworms, which shows potential as a sensitive biomarker for measuring the effects of heavy metal on reproduction.
文摘While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion
基金Supported by National Science-Technology Support Plan Projects of China (Grant No.2015BAK04B00)2015 Sino-German Postdoc Scholarship Program (Grant No.57165010)
文摘Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.
文摘A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation re, suits show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup, stop, forward swimming, backward swimming, turn right and turn left.
基金supported by the Key Project of National Natural Science Foundation of China (No. 50635030)the National Basic Research Program ("973" Program) of China (No. 2007CB616913)+2 种基金was also supported by the China Scholarship Council (CSC)We also would like to thank Karin Jespers and Sharon Warner of the Structure and Motion Laboratory for their support of the experimental workJRH’s con-tributions were supported by research grants BB/C516844/1 and BB/F01169/1 from the BBSRC, whom we thank.
文摘As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.
基金the National Natural Science Foundation of China(Grants 11772338 and 11372331)Chinese Academy of Sciences(Grants XDB22040104 and XDA22040203).
文摘We consider the classification of wake structures produced by self-propelled fish-like swimmers based on local measurements of flow variables.This problem is inspired by the extraordinary capability of animal swimmers in perceiving their hydrodynamic environments under dark condition.We train different neural networks to classify wake structures by using the streamwise velocity component,the crosswise velocity component,the vorticity and the combination of three flow variables,respectively.It is found that the neural networks trained using the two velocity components perform well in identifying the wake types,whereas the neural network trained using the vorticity suffers from a high rate of misclassification.When the neural network is trained using the combination of all three flow variables,a remarkably high accuracy in wake classification can be achieved.The results of this study can be helpful to the design of flow sensory systems in robotic underwater vehicles.
基金supported by the National Natural Science Foundation of China(10172095 and 10672183)
文摘Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.