期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SQI的超分辨率图像重建算法
1
作者
乔建苹
刘琚
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第S1期190-193,共4页
提出了一种基于自商图像(Self Quotient Image-SQI)的超分辨率图像重建算法.该方法首先利用SQI提取光照不变量作为图像特征,并假设光反射分量具有分段平滑的特性,近似认为每一个小的图像块具有相同的增益系数;然后在流形学习的框架下,...
提出了一种基于自商图像(Self Quotient Image-SQI)的超分辨率图像重建算法.该方法首先利用SQI提取光照不变量作为图像特征,并假设光反射分量具有分段平滑的特性,近似认为每一个小的图像块具有相同的增益系数;然后在流形学习的框架下,借助局部线性嵌套的思想构建高分辨率图像和低分辨率图像块间的关系,从而实现了超分辨率重建和图像增强.仿真结果表明,该算法有效地克服了传统方法受光照因素影响的缺点,在提高分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果.
展开更多
关键词
超分辨率
流形学习
自商图像(
sqi
)
阴影消除
下载PDF
职称材料
基于眼部自商图—梯度图共生矩阵的疲劳驾驶检测
被引量:
5
2
作者
潘剑凯
柳政卿
王秋成
《中国图象图形学报》
CSCD
北大核心
2021年第1期154-164,共11页
目的疲劳驾驶是引发车辆交通事故的主要原因之一,针对现有方法在驾驶员面部遮挡情况下对眼睛状态识别效果不佳的问题,提出了一种基于自商图—梯度图共生矩阵的驾驶员眼部疲劳检测方法。方法利用以残差网络(residual network,Res Net)为...
目的疲劳驾驶是引发车辆交通事故的主要原因之一,针对现有方法在驾驶员面部遮挡情况下对眼睛状态识别效果不佳的问题,提出了一种基于自商图—梯度图共生矩阵的驾驶员眼部疲劳检测方法。方法利用以残差网络(residual network,Res Net)为前置网络的SSD(single shot multibox detector)人脸检测器来获取视频中的有效人脸区域,并通过人脸关键点检测算法分割出眼睛局部区域图像;建立驾驶员眼部的自商图与梯度图共生矩阵模型,分析共生矩阵的数字统计特征,选取效果较好的特征用以判定人眼的开闭状态;结合眼睛闭合时间百分比(percentage of eyelid closure,PERCLOS)与最长闭眼持续时间(maximum closing duration,MCD)两个疲劳指标来判别驾驶员的疲劳状态。结果在六自由度汽车性能虚拟仿真实验平台上模拟汽车驾驶,采集并分析驾驶员面部视频,本文方法能够有效识别驾驶员面部遮挡时眼睛的开闭状态,准确率高达99.12%,面部未遮挡时的识别精度为98.73%,算法处理视频的速度约为32帧/s。对比方法 1采用方向梯度直方图特征与支持向量机分类器相结合的人脸检测算法,并以眼睛纵横比判定开闭眼状态,在面部遮挡时识别较弱;以卷积神经网络(convolutional neural network,CNN)判别眼睛状态的对比方法 2虽然在面部遮挡情况下的准确率高达98.02%,但眨眼检测准确率效果不佳。结论基于自商图—梯度图共生矩阵的疲劳检测方法能够有效识别面部遮挡时眼睛的开闭情况和驾驶员的疲劳状态,具有较快的检测速度与较高的准确率。
展开更多
关键词
疲劳驾驶
人脸检测
人脸关键点检测
自商图
共生矩阵
眼睛闭合时间百分比(PERCLOS)
原文传递
题名
基于SQI的超分辨率图像重建算法
1
作者
乔建苹
刘琚
机构
山东大学信息科学与工程学院
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第S1期190-193,共4页
基金
新世纪优秀人才支持计划资助项目(NCET-05-0582)
教育部博士点专项基金资助项目(20050422017)
文摘
提出了一种基于自商图像(Self Quotient Image-SQI)的超分辨率图像重建算法.该方法首先利用SQI提取光照不变量作为图像特征,并假设光反射分量具有分段平滑的特性,近似认为每一个小的图像块具有相同的增益系数;然后在流形学习的框架下,借助局部线性嵌套的思想构建高分辨率图像和低分辨率图像块间的关系,从而实现了超分辨率重建和图像增强.仿真结果表明,该算法有效地克服了传统方法受光照因素影响的缺点,在提高分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果.
关键词
超分辨率
流形学习
自商图像(
sqi
)
阴影消除
Keywords
super-resolution
manifold learning
Self Quotient
image
(
sqi
)
shadow removing
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于眼部自商图—梯度图共生矩阵的疲劳驾驶检测
被引量:
5
2
作者
潘剑凯
柳政卿
王秋成
机构
浙江工业大学机械工程学院
出处
《中国图象图形学报》
CSCD
北大核心
2021年第1期154-164,共11页
文摘
目的疲劳驾驶是引发车辆交通事故的主要原因之一,针对现有方法在驾驶员面部遮挡情况下对眼睛状态识别效果不佳的问题,提出了一种基于自商图—梯度图共生矩阵的驾驶员眼部疲劳检测方法。方法利用以残差网络(residual network,Res Net)为前置网络的SSD(single shot multibox detector)人脸检测器来获取视频中的有效人脸区域,并通过人脸关键点检测算法分割出眼睛局部区域图像;建立驾驶员眼部的自商图与梯度图共生矩阵模型,分析共生矩阵的数字统计特征,选取效果较好的特征用以判定人眼的开闭状态;结合眼睛闭合时间百分比(percentage of eyelid closure,PERCLOS)与最长闭眼持续时间(maximum closing duration,MCD)两个疲劳指标来判别驾驶员的疲劳状态。结果在六自由度汽车性能虚拟仿真实验平台上模拟汽车驾驶,采集并分析驾驶员面部视频,本文方法能够有效识别驾驶员面部遮挡时眼睛的开闭状态,准确率高达99.12%,面部未遮挡时的识别精度为98.73%,算法处理视频的速度约为32帧/s。对比方法 1采用方向梯度直方图特征与支持向量机分类器相结合的人脸检测算法,并以眼睛纵横比判定开闭眼状态,在面部遮挡时识别较弱;以卷积神经网络(convolutional neural network,CNN)判别眼睛状态的对比方法 2虽然在面部遮挡情况下的准确率高达98.02%,但眨眼检测准确率效果不佳。结论基于自商图—梯度图共生矩阵的疲劳检测方法能够有效识别面部遮挡时眼睛的开闭情况和驾驶员的疲劳状态,具有较快的检测速度与较高的准确率。
关键词
疲劳驾驶
人脸检测
人脸关键点检测
自商图
共生矩阵
眼睛闭合时间百分比(PERCLOS)
Keywords
fatigue driving
face detection
facial landmarks detection
self-quotient
image
(
sqi
)
co-occurrence matrix
percentage of eyelid closure(PERCLOS)
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于SQI的超分辨率图像重建算法
乔建苹
刘琚
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007
0
下载PDF
职称材料
2
基于眼部自商图—梯度图共生矩阵的疲劳驾驶检测
潘剑凯
柳政卿
王秋成
《中国图象图形学报》
CSCD
北大核心
2021
5
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部