An all-reflective self-referenced spectral interferometry based on the transient grating(TG)effect is proposed for single-shot measuring of the amplitude and phase of ultrashort pulses in a broadband spectral range.Ex...An all-reflective self-referenced spectral interferometry based on the transient grating(TG)effect is proposed for single-shot measuring of the amplitude and phase of ultrashort pulses in a broadband spectral range.Except for a thin third-order nonlinear medium,which was used to generate the TG signal,no transmitted optics were used in the proposed device,and few-cycle pulses in a broad spectral range from deep UV to mid-IR can be characterized.With a homemade compact and alignment-free device,a 5.0 fs pulse at 800 nm corresponding to about two cycles and a 14.3 fs pulse at 1800 nm corresponding to less than three cycles were successfully characterized.展开更多
With the development of new materials and ultra-precision processing technology, the sizes of mea- sured objects increase, and the requirements for machining accuracy and surface quality become more exacting. The trad...With the development of new materials and ultra-precision processing technology, the sizes of mea- sured objects increase, and the requirements for machining accuracy and surface quality become more exacting. The traditional measurement method based on reference datum is inadequate for measuring a high-precision object when the quality of the reference datum is approximately within the same order as that of the object. Self-referenced measurement techniques provide an effective means when the direct reference-based method cannot satisfy the required measurement or calibration accuracy. This paper discusses the reconstruction algorithms for self-referenced measurement and connects lateral shearing interferometry and multi-probe error separation. In lateral shearing interferometry, the reconstruction algorithms are generally categorized into modal or zonal methods. The multi-probe error separation techniques for straightness measurement are broadly divided into two-point and three-point methods. The common features of the lateral sheafing interferometry method and the multi-probe error separation method are identified. We conclude that the reconstruction principle in lateral shearing interferometry is similar to the two-point method in error separation on the condition that no yaw error exists. This similarity may provide a basis or inspiration for the development of both classes of methods.展开更多
基金supported by the Natural Science Foundation of Shanghai(No.18ZR1413600)the National Natural Science Foundation of China(NSFC)(Nos.61521093 and 61527821)+2 种基金the Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201538)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160106)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02).
文摘An all-reflective self-referenced spectral interferometry based on the transient grating(TG)effect is proposed for single-shot measuring of the amplitude and phase of ultrashort pulses in a broadband spectral range.Except for a thin third-order nonlinear medium,which was used to generate the TG signal,no transmitted optics were used in the proposed device,and few-cycle pulses in a broad spectral range from deep UV to mid-IR can be characterized.With a homemade compact and alignment-free device,a 5.0 fs pulse at 800 nm corresponding to about two cycles and a 14.3 fs pulse at 1800 nm corresponding to less than three cycles were successfully characterized.
文摘With the development of new materials and ultra-precision processing technology, the sizes of mea- sured objects increase, and the requirements for machining accuracy and surface quality become more exacting. The traditional measurement method based on reference datum is inadequate for measuring a high-precision object when the quality of the reference datum is approximately within the same order as that of the object. Self-referenced measurement techniques provide an effective means when the direct reference-based method cannot satisfy the required measurement or calibration accuracy. This paper discusses the reconstruction algorithms for self-referenced measurement and connects lateral shearing interferometry and multi-probe error separation. In lateral shearing interferometry, the reconstruction algorithms are generally categorized into modal or zonal methods. The multi-probe error separation techniques for straightness measurement are broadly divided into two-point and three-point methods. The common features of the lateral sheafing interferometry method and the multi-probe error separation method are identified. We conclude that the reconstruction principle in lateral shearing interferometry is similar to the two-point method in error separation on the condition that no yaw error exists. This similarity may provide a basis or inspiration for the development of both classes of methods.