期刊文献+
共找到4,186篇文章
< 1 2 210 >
每页显示 20 50 100
New robust fault-tolerant controller for self-repairing flight control systems 被引量:2
1
作者 Zhang Ren Wei Wang Zhen Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期77-82,共6页
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi... A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example. 展开更多
关键词 robust control self-repairing flight control nonlinear dynamic control extended state observer compensator.
下载PDF
MATHEMATICAL MODEL OF SELF-REPAIRING FLIGHT CONTROL 被引量:2
2
作者 王永 詹训慧 +1 位作者 吴刚 胡寿松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期178-183,共6页
The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repai... The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft. 展开更多
关键词 self-repairing flight control mathematical model operating and control factor
下载PDF
Robust fixed-time flight controller for a dual-system convertible UAV in the cruise mode
3
作者 Lulu Chen Zhenbao Liu +2 位作者 Qingqing Dang Wen Zhao Wenyu Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期53-66,共14页
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di... This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results. 展开更多
关键词 Convertible UAV flight control Disturbance observer Fixed-time control
下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver
4
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control BP neural network PID Moving chimera grid
下载PDF
Fixed-Time Sliding Mode Control With Varying Exponent Coefficient for Modular Reconfigurable Flight Arrays
5
作者 Jianquan Yang Chunxi Yang +1 位作者 Xiufeng Zhang Jing Na 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期514-528,共15页
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy... The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies. 展开更多
关键词 control allocation dynamic model fixed-time stabilization modular reconfigurable flight array(MRFA) sliding mode
下载PDF
Research on Teaching Methods of Flight Control Principles
6
作者 Dongying Li 《Journal of Electronic Research and Application》 2024年第3期155-160,共6页
With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety ... With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel. 展开更多
关键词 flight control principle knowledge Virtual simulation Teaching method
下载PDF
DIRECT SELF-REPAIRING CONTROL FOR HELICOPTER VIA QUANTUM CONTROL AND ADAPTIVE COMPENSATOR 被引量:1
7
作者 陈复扬 姜斌 陶钢 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期337-342,共6页
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the... A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach. 展开更多
关键词 HELICOPTER model reference adaptive control self-repairing control quantum control
下载PDF
Nonlinear direct data-driven control for UAV formation flight system
8
作者 WANG Jianhong Ricardo A.RAMIREZ-MENDOZA XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1409-1418,共10页
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons... This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper. 展开更多
关键词 nonlinear system nonlinear direct data-driven control model inverse control unmanned aerial vehicle(UAV)formation flight.
下载PDF
Design methodology of a mini-missile considering flight performance and guidance precision
9
作者 ZHANG Licong GONG Chunlin +1 位作者 SU Hua ANDREA Da Ronch 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期195-210,共16页
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m... The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach. 展开更多
关键词 mini-missiles(MMs) GUIDANCE NAVIGATION and control(GNC)system multi-objective optimization multidisciplinary design optimization(MDO) flight performance guidance precision
下载PDF
On the Survivability of Self-repairing Control System for a Hybrid Underwater Vehicle
10
作者 Biao Wang Chao Wu Tong Ge 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第1期32-42,共11页
A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SR... A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles. 展开更多
关键词 SURVIVABILITY self-repairing HROV full ocean depth control system
下载PDF
ADRC FRACTIONAL ORDER PID CONTROLLER DESIGN OF HYPERSONIC FLIGHT VEHICLE 被引量:8
11
作者 秦昌茂 齐乃明 +1 位作者 吕瑞 朱凯 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期240-245,共6页
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i... Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters. 展开更多
关键词 hypersonic flight vehicle active disturbance rejection controller(ADRC) fractional order PID D-decomposition method
下载PDF
APPLICATION OF HYBRID AERO-ENGINE MODEL FOR INTEGRATED FLIGHT/PROPULSION OPTIMAL CONTROL 被引量:4
12
作者 王健康 张海波 +1 位作者 孙健国 李永进 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期16-24,共9页
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr... The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization. 展开更多
关键词 integrated flight/propulsion optimal control AERO-ENGINE hybrid model performance seeking con- trol sequential quadratic programming
下载PDF
ADAPTIVE BACKSTEPPING FLIGHT CONTROL WITH ACTUATOR SATURATION 被引量:1
13
作者 苏丙未 陈欣 +1 位作者 曹云峰 杨一栋 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期81-85,共5页
Because actuator satu ration can become a problem or even a disaster in flight control system, the con sideration of actuator saturation in the design phase may indeed reduce the degr ee of conservativeness of an flig... Because actuator satu ration can become a problem or even a disaster in flight control system, the con sideration of actuator saturation in the design phase may indeed reduce the degr ee of conservativeness of an flight control system (FCS) and thus noticeably enh ance the performance of the FCS. Deflection limits and rate limits are both cons idered in a new adaptive backstepping FCS design process. The key of the method is that a new control Lyapunov function (CLF) and a control law are chosen when the actuator saturation occurs. This idea results from that there must be a vari ation in the pseudo-control at saturation. The whole progress is a modification of an early presented method: adaptive backstepping control scheme. The stabili ty is proved and verified successfully. The conclusion and some comments about t his method are given in the end. 展开更多
关键词 nonlinear systems satu ration flight control system BACKSTEPPING adaptive control
下载PDF
Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform 被引量:21
14
作者 吴东苏 顾宏斌 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期425-433,共9页
There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two gr... There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system. 展开更多
关键词 motion platform nonlinear adaptive control sliding control flight simulator Stewart platform
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
15
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 Sliding mode control Chattering free Fuzzy control Genetic algorithm flight simulator
下载PDF
Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table 被引量:11
16
作者 刘金琨 孙富春 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期65-71,共7页
Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th... Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time. 展开更多
关键词 nominal model sliding mode control backstepping control robust control 3-axis flight table
下载PDF
Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System with Large Friction 被引量:21
17
作者 Liu Jinkun & Er LianjieAutomatic Control Department, Beijing University of Aeronautics and Astronautics, Beijing 100083, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期59-62,共4页
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in... Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is 展开更多
关键词 Sliding mode control flight simulator Servo system Friction model.
下载PDF
Novel robust fault diagnosis method for flight control systems 被引量:10
18
作者 Guo Yuying Jiang Bin +1 位作者 Zhang Youmin Wang dianfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1017-1023,共7页
A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model... A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm. 展开更多
关键词 fault diagnosis adaptive multiple model unknown input observer flight control.
下载PDF
Nonlinear Intelligent Flight Control for Quadrotor Unmanned Helicopter 被引量:7
19
作者 甄子洋 浦黄忠 +1 位作者 陈琦 王新华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期29-34,共6页
Quadrotor unmanned helicopter is a new popular research platform for unmanned aerial vehicle(UAV),thanks to its simple construction,vertical take-off and landing(VTOL)capability.Here a nonlinear intelligent flight con... Quadrotor unmanned helicopter is a new popular research platform for unmanned aerial vehicle(UAV),thanks to its simple construction,vertical take-off and landing(VTOL)capability.Here a nonlinear intelligent flight control system is developed for quadrotor unmanned helicopter,including trajectory control loop composed of co-controller and state estimator,and attitude control loop composed of brain emotional learning(BEL)intelligent controller.BEL intelligent controller based on mammalian middle brain is characterized as self-learning capability,model-free and robustness.Simulation results of a small quadrotor unmanned helicopter show that the BEL intelligent controller-based flight control system has faster dynamical responses with higher precision than the traditional controller-based system. 展开更多
关键词 quadrotor unmanned helicopter flight control brain emotional learning(BEL) intelligent control
下载PDF
Flight Control System of Unmanned Aerial Vehicle 被引量:5
20
作者 浦黄忠 甄子洋 夏曼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期1-8,共8页
To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target trackin... To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted. 展开更多
关键词 unmanned aerial vehicle(UAV) flight control optimal control adaptive control intelligent control
下载PDF
上一页 1 2 210 下一页 到第
使用帮助 返回顶部