A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s...A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.展开更多
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti...Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.展开更多
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both tradition...The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment.After a detailed exploration of damage tolerance concepts and their historical progression,the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures.The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures,marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification and self-repair.This holistic approach broadens the applicability of these technologies across diverse sectors yet brings forth unique challenges demanding further innovation and research.Additionally,the review examines future prospects that combine advanced manufacturing processes with data-centric methodologies,amplifying the capabilities of these‘intelligent’structures.The review culminates by highlighting the transformative potential of this union between smart materials and self-repairable structures,promoting a sustainable and efficient engineering paradigm.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Charact...Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Characteristics such as tensile strength, compressive strength, and porosity were monitored at 7, 14, and 28 days of maturation. The results show that aggregates made from used tires are suitable for concrete production and can replace natural gravel. Regarding the formed concrete, low substitution rates lead to improved concrete properties, but only at an early age. A reaction between the cement and rubber could be the underlying cause. Additionally, the products of this reaction may mitigate the evolution of the compressive strength of the concrete over time.展开更多
The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repai...The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.展开更多
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the...A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.展开更多
Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reductio...Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reduction,anti-wear and self-repairing performance of various surface roughness friction pairs were examined by friction testing machine.An operation comparison was made between SJ10W-40 lubricant with and without HMS.The surface morphology and elementary composition of the grinding cracks were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that the lubrication state changes from boundary lubrication into mixed lubrication after operation in lubricant with HMS.The friction-reduction,anti-wear and self-repairing performance of the friction pairs with various surface roughness are distinctly different.There is a repairing film whose material is different from substrate material on the grinding cracks.In addition,Si,Mg,O,Al and other elements are deposited on the repairing film which contains nanocrystals of these elements.And HMS self-repairing material possesses superior performance of friction-reduction,anti-wear and self-repairing effects.展开更多
An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelast...An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity,the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation.展开更多
A new self-repairing membrane for inflatable light weight structures such as rubber boats or Tensairity constructions is presented. Inspired by rapid self-sealing processes in plants, a thin soft cellular polyurethane...A new self-repairing membrane for inflatable light weight structures such as rubber boats or Tensairity constructions is presented. Inspired by rapid self-sealing processes in plants, a thin soft cellular polyurethane foam coating is applied on the inside of a fabric substrate, which closes the fissure if the membrane is punctured with a spike. Experimental tests are carried out with a purpose built setup by measuring the air mass flow through a leak in a damaged membrane sample. It is shown that the weight per unit area of the self-repairing foam as well as the curing of the two component PU-foam under an overpressure influence the repair efficiency. Curing the foam under overpressure affects the relative density as well as the microstructure of the foam coatings. Maximal median repair efficiencies of 0.999 have been obtained with 0.16 g.cm 2 foam cured at 1 bar overpressure. These results suggest that the bio-inspired technique has the potential to extend the functional integrity of injured inflatable structures dramatically.展开更多
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi...A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example.展开更多
The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The micro...The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The microscopic morphology, elemental composition, and self-repairing properties were observed and analyzed by using scanning electronic microscopy(SEM), X-ray diffraction(XRD) and digital microscopy. The relationships among sulfonated graphene ethanol solution concentration, friction coefficient, and abrasion loss were revealed. It was found that the optimal concentration of ethanol solution with the addition of sulfonated graphene was 0.15g/m L and the coefficient of friction was only 0.105 under certain condition. Then the stable chemical properties and good anti-corrosion properties of the metal-graphene layer were further confirmed using salt spray corrosion test. In summary, sulfonated graphene can be used as a new kind of self repairing additive, and it has excellent wear-resistant and self-repairing performances.展开更多
A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SR...A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles.展开更多
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga...The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.展开更多
The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil i...The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.展开更多
Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the ...Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber.展开更多
There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl...There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.展开更多
基金The research is supported by the National Science Foundation of China(key project grant No.51731008 and general project grant No.51671163).
文摘A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.
基金the financial support from the National Natural Science Foundation of China (Nos.52204389,U19A2084 and 52234009)the National Key Research and Development Program (No.2022YFE0122000)Program for the Central University Youth Innovation Team。
文摘Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
文摘The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment.After a detailed exploration of damage tolerance concepts and their historical progression,the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures.The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures,marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification and self-repair.This holistic approach broadens the applicability of these technologies across diverse sectors yet brings forth unique challenges demanding further innovation and research.Additionally,the review examines future prospects that combine advanced manufacturing processes with data-centric methodologies,amplifying the capabilities of these‘intelligent’structures.The review culminates by highlighting the transformative potential of this union between smart materials and self-repairable structures,promoting a sustainable and efficient engineering paradigm.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
文摘Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Characteristics such as tensile strength, compressive strength, and porosity were monitored at 7, 14, and 28 days of maturation. The results show that aggregates made from used tires are suitable for concrete production and can replace natural gravel. Regarding the formed concrete, low substitution rates lead to improved concrete properties, but only at an early age. A reaction between the cement and rubber could be the underlying cause. Additionally, the products of this reaction may mitigate the evolution of the compressive strength of the concrete over time.
文摘The most prospective method for certain structural failures and damages that cannot employ redundancy is self-repairing techniques, to ensure especially the maximum flight safety. Based on the characters of self-repairing aircraft, this paper states some basic assumptions of the self-repairing aircraft, and puts forward some special new conceptions concerning the self-repairing aircraft: control input, operating input, command input, repair input and operating and control factor as well as their relationships. Thus it provides a simple and reliable mathematical model structure for the research on the self-repairing control of the aircraft.
基金Supported by the National Natural Science Foundation of China(61074080)the Innovation Foundation for Aeronautical Science and Technology(08C52001)~~
文摘A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.
基金Projects(50735006,50904072) supported by the National Natural Science Foundation of ChinaProject(2007CB607601) supported by the National Basic Research Program of China
文摘Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reduction,anti-wear and self-repairing performance of various surface roughness friction pairs were examined by friction testing machine.An operation comparison was made between SJ10W-40 lubricant with and without HMS.The surface morphology and elementary composition of the grinding cracks were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that the lubrication state changes from boundary lubrication into mixed lubrication after operation in lubricant with HMS.The friction-reduction,anti-wear and self-repairing performance of the friction pairs with various surface roughness are distinctly different.There is a repairing film whose material is different from substrate material on the grinding cracks.In addition,Si,Mg,O,Al and other elements are deposited on the repairing film which contains nanocrystals of these elements.And HMS self-repairing material possesses superior performance of friction-reduction,anti-wear and self-repairing effects.
基金Project(50538020) supported by the National Natural Science Foundation of ChinaProject(20070421050) supported by China Postdoctoral Science Foundation
文摘An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity,the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation.
文摘A new self-repairing membrane for inflatable light weight structures such as rubber boats or Tensairity constructions is presented. Inspired by rapid self-sealing processes in plants, a thin soft cellular polyurethane foam coating is applied on the inside of a fabric substrate, which closes the fissure if the membrane is punctured with a spike. Experimental tests are carried out with a purpose built setup by measuring the air mass flow through a leak in a damaged membrane sample. It is shown that the weight per unit area of the self-repairing foam as well as the curing of the two component PU-foam under an overpressure influence the repair efficiency. Curing the foam under overpressure affects the relative density as well as the microstructure of the foam coatings. Maximal median repair efficiencies of 0.999 have been obtained with 0.16 g.cm 2 foam cured at 1 bar overpressure. These results suggest that the bio-inspired technique has the potential to extend the functional integrity of injured inflatable structures dramatically.
基金supported by the National Natural Science Foundation of China (60874117)the 111 Project (B07009)
文摘A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example.
基金Funded by the National Natural Science Foundation of China(Nos.51675230&51405195)
文摘The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The microscopic morphology, elemental composition, and self-repairing properties were observed and analyzed by using scanning electronic microscopy(SEM), X-ray diffraction(XRD) and digital microscopy. The relationships among sulfonated graphene ethanol solution concentration, friction coefficient, and abrasion loss were revealed. It was found that the optimal concentration of ethanol solution with the addition of sulfonated graphene was 0.15g/m L and the coefficient of friction was only 0.105 under certain condition. Then the stable chemical properties and good anti-corrosion properties of the metal-graphene layer were further confirmed using salt spray corrosion test. In summary, sulfonated graphene can be used as a new kind of self repairing additive, and it has excellent wear-resistant and self-repairing performances.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51109132)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073120015)
文摘A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles.
基金funded by the NationalNatural Science Foundation of China (Nos.11902229,11502181)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB22040502,XDC06030200).
文摘The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.
文摘The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.
基金supported by the financial support received from Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009)National Natural Science Foundation of China(Grant Nos.U2040224,52179145)Natural Science Foundation of Henan(Grant Nos.212300410018,222300420081).
文摘Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber.
文摘There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.