期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets
1
作者 PENG Kewen TIAN Shouceng +3 位作者 LI Gensheng HUANG Zhongwei YANG Ruiyue GUO Zhaoquan 《Petroleum Exploration and Development》 2018年第2期343-350,共8页
Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat ex... Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat exchange between cavitation bubble and ambient fluid. With this model, the influence factors on the cavitation intensity are investigated. The results show that the destructiveness of cavitating jet in breaking rocks depends on the bubble's first collapse, with decreasing intensity in the subsequent collapses. The self-resonating effect significantly enhances the cavitation intensity by promoting the collapse pressure and elongating its duration. Hydraulic parameters are proven to be the dominating factors influencing cavitation intensity: while collapse intensity monotonously increases with jet velocity, there exists an optimum ambient pressure where highest collapse intensity can be achieved. Conversely, the fluid properties show minor influences: cavitation intensity only slightly decreases with the increasing of fluid's density and barely changes with the variation of viscosity and surface tension. The results from this investigation help to uncover the mechanism of the enhanced erosion potential of self-resonating cavitating jet. The conclusions can be used to further improve the performance of self-resonating cavitating jet in field applications. 展开更多
关键词 self-resonating cavitating jet cavitating BUBBLE COLLAPSE INTENSITY hydraulic parameters fluid properties
下载PDF
Mechanisms and field test of solution mining by self-resonating cavitating water jets 被引量:5
2
作者 Song Xianzhi Li Gensheng +4 位作者 Yuan Jinping Tian Zhonglan Shen Ruichen Yuan Guangjie Huang Zhongwei 《Petroleum Science》 SCIE CAS CSCD 2010年第3期385-389,共5页
Rapid solution mining is the key to cavern construction in salt formations. Rapid solution mining technology with self-resonating cavitating water jets is described in this paper. It can generate three main physical e... Rapid solution mining is the key to cavern construction in salt formations. Rapid solution mining technology with self-resonating cavitating water jets is described in this paper. It can generate three main physical effects: helical flow dissolution, self-resonating cavitating jet erosion, and ultrasonic waves. A self-resonating cavitating nozzle was also designed with the principles based on theory of fluid transients and hydro-acoustics. Under ambient pressure, the experimental results show that the impulse amplitude of pressure reaches a peak at a standoff distance of 5-13 times the nozzle outlet diameter and the cutting ability of self-resonating cavitating jets is twice that of conventional jets under the same conditions. Compared with the conventional mining method, the field test indicates that rapid solution mining technology with self-resonating cavitating jets can speed the construction by more than 2 times at the pocket stage of cavern development. 展开更多
关键词 cavitating jet underground storage helical flow rapid solution salt cavern
下载PDF
Erosion characteristics and mechanism of the self-resonating cavitating jet impacting aluminum specimens under the confining pressure conditions 被引量:4
3
作者 Hua-lin Liao Sheng-li Zhao +4 位作者 Yan-feng Cao Lei Zhang Can Yi Ji-lei Niu Li-hong Zhu 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第2期375-384,共10页
In order to study the effects of the confining pressure on the erosion characteristics of the self-resonating cavitating jet under wellbore and deep-water conditions,experiments are conducted on aluminum specimens imp... In order to study the effects of the confining pressure on the erosion characteristics of the self-resonating cavitating jet under wellbore and deep-water conditions,experiments are conducted on aluminum specimens impinged by the organ pipe cavitation nozzle and the conical nozzle with the confining pressure in the range 0 MPa–10.0 MPa.Meanwhile,through the numerical simulation of the collapsing process of the cavitation bubble and the noise test,the cavitation erosion mechanism is analyzed.The experimental results show that the optimal standoff distance and the confining pressure can be obtained for the maximum erosion quantities,and the optimal standoff distance is 5 to 7 times greater than the equivalent nozzle outlet diameter and the confining pressure is about 2.0 MPa.Under the same conditions,the erosion caused by the cavitation nozzle is up to 2 times larger than that caused by the conical nozzle.According to the numerical simulation and the noise test,the cavitation erosion on the aluminum specimens is mostly caused by mechanical forces due to the high-frequency pressure pulse generated during the collapse of cavitation bubbles,while just a small part is caused by micro-jets. 展开更多
关键词 cavitating jet cavitation erosion confining pressure NOZZLE
原文传递
Effects of Area Discontinuity at Nozzle Inlet on the Characteristics of Self-resonating Cavitating Waterjet 被引量:8
4
作者 LI Deng KANG Yong +2 位作者 DING Xiaolong WANG Xiaochuan FANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期813-824,共12页
The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the ch... The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the characteristics of the jet are rarely available.In order to further improve the performance of SRCW,effects of area discontinuity(enlargement and contraction) are experimentally investigated using three organ-pipe nozzles.Axial pressure oscillation peak and amplitude as well as aggressive erosion intensity of the jet are used to evaluate the effects.The results reveal that area enlargement and contraction affect the peak differently,depending on the inlet pressure,nozzle geometry,and standoff distance;while area contraction always improves the amplitude regardless of these factors.At inlet pressures of 10 MPa and 20 MPa,area discontinuity improves the peak at almost all the testing standoff distances,while this only happens at smaller standoff distances with the inlet pressure increased to 30 MPa.The capability of area discontinuity for improving the amplitude is enhancing with increasing inlet pressure.Moreover,the cavitation erosion ability of the jet can be largely enhanced around the optimum standoff distance,depending on the type of area discontinuity and nozzle geometry.A preliminary analysis of the influence of area discontinuity on the disturbance waves in the flow is also performed.The proposed research provides a new method for effectively enhancing the performance of SRCW. 展开更多
关键词 area discontinuity self-resonating cavitating waterjet(SRCW) organ-pipe nozzle pressure oscillation cavitation erosion
下载PDF
Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications
5
作者 Yu Gao Zhenqiang Xu Kaixiang Shen 《Fluid Dynamics & Materials Processing》 EI 2024年第1期179-192,共14页
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora... Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°. 展开更多
关键词 cavitation jet angle nozzle hydraulic characteristics nozzle parameters
下载PDF
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet
6
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 Submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant Breaking characteristics Failure modes
下载PDF
Structure optimization of the organ-pipe cavitating nozzle and its erosion ability test on hydrate-bearing sediments 被引量:1
7
作者 Xiao-Ya Wu Yi-Qun Zhang +5 位作者 Zhen-Qiang Xu Shuai Zhao Gen-Sheng Li Shou-Ceng Tian Ya-Wen Tan Ke-Wen Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1104-1118,共15页
Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present... Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation. 展开更多
关键词 Natural gas hydrate cavitating jet Structure optimization Computational fluid dynamics Experimental study
下载PDF
High Speed Observation of Periodic Cavity Behavior in a Convergent-Divergent Nozzle for Cavitating Water Jet 被引量:6
8
作者 Keiichi Sato Yuta Taguchi Shota Hayashi 《Journal of Flow Control, Measurement & Visualization》 2013年第3期102-107,共6页
Cloud cavitation shows an unsteady periodic tendency under a certain flow condition. In a cavitating water jet flow with cavitation clouds, the cavities or the clouds produce high impact at their collapse. In order to... Cloud cavitation shows an unsteady periodic tendency under a certain flow condition. In a cavitating water jet flow with cavitation clouds, the cavities or the clouds produce high impact at their collapse. In order to make clear a mechanism of the periodic cavity behavior, we experimentally examine the behavior in a transparent cylindrical convergent-divergent nozzle using a high-speed video camera. An effect of upstream pressure fluctuation due to a plunger pump is investigated from a viewpoint of unsteady behavior in a cavitating water jet. As a result, it is found that the cavitating flow has two kinds of oscillation patterns in the cavity length (cavitation cloud region). One is due to the upstream pressure fluctuation caused by the plunger pump. The other is much shorter periodic motion related to the characteristic oscillation of cavitation clouds accompanied with the shrinking (reentrant), growing and shedding motion of the clouds. 展开更多
关键词 Cloud cavitATION PERIODIC Behavior Water jet HIGH-SPEED Video OBSERVATION Image Analysis
下载PDF
Flow-visualization and numerical investigation on the optimum design of cavitating jet nozzle 被引量:1
9
作者 Xiao-Ya Wu Yi-Qun Zhang +3 位作者 Ya-Wen Tan Gen-Sheng Li Ke-Wen Peng Bo Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2284-2296,共13页
Cavitating jet is widely used in drilling,rock cutting and ocean re source exploitation because of its stro ng erosion ability.The analysis of the relationship between the flow characteristics and the structure of cav... Cavitating jet is widely used in drilling,rock cutting and ocean re source exploitation because of its stro ng erosion ability.The analysis of the relationship between the flow characteristics and the structure of cavitating jet nozzle is critical.Here,we utilized 3 D printed technology and high-speed photography to design visualization experime nts to analyse the impact of the variation of resonator and throat size of the organ-pipe self-resonating cavitating nozzles on the cavitation characteristics through image processing.The velocity field,pressure field and vapor volume fraction injected by the nozzle were taken as the objective functions to study the influence of different structural parameters on the cavitation effect based on FLUENT 19.0 software,and the results were compared with the experimental results.The results show that increasing the length and diameter of the resonator contributes to the occurrence of cavitation and the structure stability of the flow field.However,excessive size affects self-resonant of the nozzle and makes it difficult to form resonance effect.In this study,the optimal values of nozzle throat length and divergent angle are twice the throat diameter and 40°,respectively.This research provides an integrated research method to study the optimization of self-resonating nozzle and cavitating jet characteristics. 展开更多
关键词 cavitating jet self-resonating cavitating nozzle VISUALIZATION Computational fluid dynamics Structure optimization
下载PDF
Numerical simulation of bubble chaotic motion in a cavitating water jet 被引量:5
10
作者 卢义玉 《Journal of Chongqing University》 CAS 2003年第1期91-94,共4页
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu... A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet. 展开更多
关键词 气穴喷水式推进器 计算流体动力学 数值模拟 气泡不规则运动
下载PDF
Erosion of Grooved Surfaces by Cavitating Jet with Hydraulic Oil 被引量:1
11
作者 Toshiharu Kazama Kento Kumagai +2 位作者 Yasuhiro Osafune Yukihito Narita Shohei Ryu 《Journal of Flow Control, Measurement & Visualization》 2015年第2期41-50,共10页
To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice n... To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice nozzle, a hydraulic pump with an electric motor, hydraulic auxiliaries, including valves, a cooler, a filter, a reservoir, and measuring instruments, including pressure gages and a thermometer. Hexahedral specimens made of aluminum alloy with flat and grooved surfaces and oblique angles were prepared. Hydraulic oil with a viscosity grade of 32 was used at 40&degC as the test fluid. The upstream absolute pressure was kept at 10.1 MPa and the cavitation numbers were set at 0.02 - 0.04. The results of this experiment yielded the following conclusions. The mass loss of the grooved specimens did not increase monotonically as the exposure time increased. The standoff distances at the maximum mass loss for the flat and grooved specimens were almost equivalent. The mass loss decreased as the oblique angle increased and the cavitation number increased, regardless of the presence of grooves. The surfaces were eroded in a ring-like region, but the region elongated as the angle increased. For the grooved specimens, the ridges on the ring were eroded, and when the directions of the grooves and the flow matched, the roots and flanks were severely eroded. 展开更多
关键词 Oil-Hydraulics cavitATION EROSION jet GROOVES
下载PDF
Numerical Investigation of the Angle of Attack Effect on Cloud Cavitation Flow around a Clark-Y Hydrofoil
12
作者 Di Peng Guoqing Chen +1 位作者 Jiale Yan Shiping Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2947-2964,共18页
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic... Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics. 展开更多
关键词 Cloud cavitation re-entrant jet compression wave clark-Y hydrofoil
下载PDF
Shadowgraph Imaging of Cavitating Jet
13
作者 Ryuta Watanabe Takayuki Kikuchi +1 位作者 Takayuki Yamagata Nobuyuki Fujisawa 《Journal of Flow Control, Measurement & Visualization》 2015年第3期106-110,共5页
This paper deals with the statistical properties of unsteady structure of cavitating water-jet issuing into a stagnant fluid of water using the shadowgraph imaging combined with the proper orthogonal decomposition (PO... This paper deals with the statistical properties of unsteady structure of cavitating water-jet issuing into a stagnant fluid of water using the shadowgraph imaging combined with the proper orthogonal decomposition (POD) analysis. The experimental result indicates that the cavitating jet is composed of axisymmetric mode, while the periodic axial oscillation is found along the jet centerline. The reconstructed cavitation images show the presence of growing, shrinking and shedding motion in the cavitation cloud, which sustains a periodic behavior of the cavitating jet. 展开更多
关键词 cavitating jet POD Analysis SHADOWGRAPH PERIODIC STRUCTURE
下载PDF
Numerical study of hydrofoil surface jet flow on cavitation suppression 被引量:5
14
作者 WANG Wei LU Shengpeng +3 位作者 XU Ruiduo YI Qi WANG Yayun WANG Xiaofang 《排灌机械工程学报》 EI CSCD 北大核心 2017年第10期829-834,共6页
Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To sup... Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil. 展开更多
关键词 HYDROFOIL cavitATION suppression jet flow lift-to-drag ratio
下载PDF
Effect of Geometrical Parameters on Submerged Cavitation Jet Discharged from Profiled Central-body Nozzle 被引量:4
15
作者 YANG Minguan XIAO Shengnan +1 位作者 KANG Can WANG Yuli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期476-482,共7页
The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitat... The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle’s outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle. 展开更多
关键词 central-body nozzle cavitation jet square-outlet numerical simulation
下载PDF
Passive control of cavitating flow around an axisymmetric projectile by using a trip bar 被引量:4
16
作者 Jian Huang Chao Yu +2 位作者 Yiwei Wang Chang Xu Chenguang Huang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期181-184,共4页
Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicle... Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software Open FOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles. 展开更多
关键词 Unsteady cavitating flow Trip bar Re-entrant jet Passive flow control
下载PDF
Cavitation of a Submerged Jet at the Spherical Valve Plate/Cylinder Block Interface for Axial Piston Pump 被引量:2
17
作者 Bin Zhao Weiwei Guo Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期197-211,共15页
The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical... The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect. 展开更多
关键词 cavitation submerged jet Spherical valve plate/cylinder block pair Axial piston pump
下载PDF
Energy Consumption in Comminution of Mica with Cavitation Abrasive Water Jet 被引量:12
18
作者 GUO Chu-wen DONG Lu 《Journal of China University of Mining and Technology》 EI 2007年第2期251-254,共4页
We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with c... We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder. 展开更多
关键词 能量消耗 云母 粉碎 水注气蚀研磨
下载PDF
Periodic Behavior of Cavitation Cloud Shedding in Submerged Water Jets Issuing from a Sheathed Pipe Nozzle 被引量:1
19
作者 Guoyi Peng Ayaka Wakui +2 位作者 Yasuyuki Oguma Seiji Shimizu Hong Ji 《Journal of Flow Control, Measurement & Visualization》 2018年第1期15-26,共12页
The behavior of cavitation cloud shedding in submerged water jets issuing from a sheathed pipe nozzle is investigated experimentally by high-speed camera visualization observation. Experiments are carried out under di... The behavior of cavitation cloud shedding in submerged water jets issuing from a sheathed pipe nozzle is investigated experimentally by high-speed camera visualization observation. Experiments are carried out under different cavitation numbers decreased to 0.01 with increase of the injection pressure, and the frequency spectrum of cavitation cloud shedding is evaluated by statistical analysis of a sequence of high-speed camera images. Experiments demonstrate that cavitation clouds appear when the cavitation number σ decreases to the level of 0.5-0.7 and developed cavitation clouds shed downstream periodically at multiple frequencies. The low frequency components of cavitation cloud shedding is basically dependent upon the pressure pulsation of plunger pump, which is often employed in various industry application of water jets. However, the high frequency components are closely related to the shedding of vortexes and the collapsing of cavitation clouds, which are dependent on the flow structure of submerged jets and the property of cavitation clouds consisted of numerous bubbles. 展开更多
关键词 Water jet cavitATION cavitATION Cloud Visualization Image Analysis
下载PDF
Flow Characteristics and Cavitation Effect of the Submerged Water Jet Discharged from a Central-Body Nozzle 被引量:1
20
作者 Haixia Liu Qiming Shao Can Kang 《World Journal of Engineering and Technology》 2014年第4期281-288,共8页
To assess the impingement capability of water jet, submerged water jet discharged from a centralbody nozzle is investigated. Efforts are devoted to both the wavy jet edge and the cavitation phenomenon involved. Three ... To assess the impingement capability of water jet, submerged water jet discharged from a centralbody nozzle is investigated. Efforts are devoted to both the wavy jet edge and the cavitation phenomenon involved. Three configurations of the central body are examined and jet pressure is fixed at 15 MPa. Jet edge is visualized using high speed photography. Numerical simulation is performed to extract flow parameter distributions in the jet stream and to predict cavity profiles. Furthermore, an impingement experiment with target sandstone samples is conducted as well. The results indicate that both lateral fluctuation amplitude and frequency of the jet stream vary with axial position of the central body. Cavitation tongues of different stream wise dimensions are manifested in the wake flows downstream of the central body. In case of the downstream end of the central body parallel with nozzle outlet section, the largest stream wise dimension of cavitation zone is obtained. Relative to the round nozzle with the same equivalent outlet diameter, the central-body nozzle yields preferable impinging effect. 展开更多
关键词 SUBMERGED Water jet cavitATION Numerical Simulation IMPINGEMENT
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部