For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking feat...For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry.展开更多
In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enha...In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enhancement by using selfrotating twisted tapes(SRTTs)and Al_(2)O_(3) nanoparticles.The effect of the selfrotating twisted tapes and Al2O3 nanoparticles on the thermal performance was comprehensively investigated in a circular pipe.The experimental results indicated the heat transfer rate was effectively improved by SRTTs in comparison of plain tube.In addition,the heat transfer multiplier with SRTTs decreased from 1.38 to 1.08 with the Reynolds number increasing from 19,322 to 64,407,while the friction factor multiplier decreased from 1.61 to 1.32.Besides,the results indicated that the employment of Al_(2)O_(3) nanoparticles and SRTTs demonstrated superior thermal performance to the single SRTTs.As Reynolds number increases from 19,322 to 64,407,the heat transfer multiplier decreased from 2.08 to 1.18 in the mass concentration of 3.0%and from 1.38 to 1.08 in mass concentration of 0.0%.Finally,the new heat transfer and friction factor correlations considering the combined effect of Al2O3 nanoparticle and SRTTs were developed within 10%deviation of experimental values.展开更多
To improve the efficiency of the steelmaking process,a system of self-rotating lance was designed,and corresponding cold simulation mechanism was developed.The influence of the self-rotating lance on the mass transfer...To improve the efficiency of the steelmaking process,a system of self-rotating lance was designed,and corresponding cold simulation mechanism was developed.The influence of the self-rotating lance on the mass transfer rate between slag and molten steel was investigated by comparing this novel system with the traditional oxygen lance.The results show that the self-rotating lance can stably rotate with a gas jet as the power source.The mass transfer rate increases with an increase in the top and bottom blow flow rates and with a decline in the lance position.Approximately 13.7% of the top blow flow rate is converted to stirring energy,which is approximately twice that of the traditional oxygen lance,and the mass transfer rate can increase by over 30%.Furthermore,the impact energy can be concentrated at different depths of the molten bath by adjusting the rotational speed.With the same energy density,the mass transfer rate produced by the self-rotating lance is higher;however,the influence of the energy density on the mass transfer rate is low when the rotational speed is 30-50 r/min.展开更多
A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By a...A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.展开更多
The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid wi...The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.展开更多
Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D p...Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).展开更多
基金supports from Natural Science Foundation of China(Grant No51274235)Shandong Provincial Natural Science Foundation(Grant No.ZR2019MEE120)the Major project of CNPC(Grant No.ZD2019-183-005).
文摘For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry.
文摘In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enhancement by using selfrotating twisted tapes(SRTTs)and Al_(2)O_(3) nanoparticles.The effect of the selfrotating twisted tapes and Al2O3 nanoparticles on the thermal performance was comprehensively investigated in a circular pipe.The experimental results indicated the heat transfer rate was effectively improved by SRTTs in comparison of plain tube.In addition,the heat transfer multiplier with SRTTs decreased from 1.38 to 1.08 with the Reynolds number increasing from 19,322 to 64,407,while the friction factor multiplier decreased from 1.61 to 1.32.Besides,the results indicated that the employment of Al_(2)O_(3) nanoparticles and SRTTs demonstrated superior thermal performance to the single SRTTs.As Reynolds number increases from 19,322 to 64,407,the heat transfer multiplier decreased from 2.08 to 1.18 in the mass concentration of 3.0%and from 1.38 to 1.08 in mass concentration of 0.0%.Finally,the new heat transfer and friction factor correlations considering the combined effect of Al2O3 nanoparticle and SRTTs were developed within 10%deviation of experimental values.
基金the National Key Research and Development Program with Project Number 2017YFB0304000the Beijing Natural Science Foundation with Project Number 2172057 in China.
文摘To improve the efficiency of the steelmaking process,a system of self-rotating lance was designed,and corresponding cold simulation mechanism was developed.The influence of the self-rotating lance on the mass transfer rate between slag and molten steel was investigated by comparing this novel system with the traditional oxygen lance.The results show that the self-rotating lance can stably rotate with a gas jet as the power source.The mass transfer rate increases with an increase in the top and bottom blow flow rates and with a decline in the lance position.Approximately 13.7% of the top blow flow rate is converted to stirring energy,which is approximately twice that of the traditional oxygen lance,and the mass transfer rate can increase by over 30%.Furthermore,the impact energy can be concentrated at different depths of the molten bath by adjusting the rotational speed.With the same energy density,the mass transfer rate produced by the self-rotating lance is higher;however,the influence of the energy density on the mass transfer rate is low when the rotational speed is 30-50 r/min.
基金Supported by the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.
基金This work was supported by the sponsorship of the National Science Foundation for Distinguished Young Scholars of China (51125032), the sponsorship of the National Key Research and Development Program of China (2016YFC0204500), and the National Natural Science Foundation of China (51608203).
文摘The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.
文摘Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).