In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-tim...The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.展开更多
Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The ...Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The samples were extracted from four lithological facies relatively rich in clay mineral,carbonate and quartz,respectively.The self-sealing of fractures was measured by fracture closure,water permeability variation,gas penetration,and recovery of gas-induced pathways.Most of the fractured samples exhibited a dramatic reduction inwater permeability to low levels that is close to that of intact rock,depending on their mineralogical composition,fracture intensity,confining stress,and load duration.The self-sealing capacity of the clay-rich samples is higher than that of the carbonate-rich and sandy ones.Significant effects of sample size and fracture intensity were identified.The sealed fractures become gas-tight for certain in-jection pressures.However,the measured gas breakthrough pressures are still lower than the confining stresses.The gas-induced pathways can recover when contacting water.These important findings imply that fractures in such indurated claystones can effectively recover to hinder water transport but allow gas release under relatively low pressures without compromising the rock integrity.展开更多
The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball...The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball and the ball seat.This leads to pressure leakage during the fracturing process and fracturing failure.In this paper,combined with the actual ball seat materials and working conditions during the fracturing process,the erosion tests of ductile iron and tungsten carbide materials under different erosion speeds,angles,and mortar concentrations are carried out.Then the erosion test results were analyzed by mathematical fitting,and a set of erosion models suitable for sliding sleeve setting ball seat materials were innovatively established.For the first time,this paper combines the erosion model obtained from the experiment and the computational fluid dynamics(CFD)with Fluent software to simulate the erosion of the ball seat.Based on the simulation results,the morphology of the sliding sleeve seat ball after erosion is predicted.Through analysis of the test and simulation results,it is showed that the erosion rate of tungsten carbide material is lower and the wear resistance is better under the condition of small angle erosion.This research can offer a strong basis for fracturing site selection,surface treatment methods,and prediction of failure time of ball seats.展开更多
Automotive seat design presents an ongoing challenge as it involves balancing conflicting customer requirements, ranging from comfort and support to adaptability for diverse body types and custom-molded fit. Original ...Automotive seat design presents an ongoing challenge as it involves balancing conflicting customer requirements, ranging from comfort and support to adaptability for diverse body types and custom-molded fit. Original equipment manufacturers often struggle to address the diverse needs dictated by the environment of use in automotive seat design. In response to these deficiencies, this paper employs the design thinking approach/model to explore the gaps in automotive seats comprehensively. The study provides valuable recommendations and documents the exploratory work carried out to bridge these gaps and enhance the overall automotive seat design. By utilizing design thinking principles, this research aims to pave the way for innovative solutions that meet the evolving demands of drivers, ensuring a more comfortable and safer driving experience for daily driving, and better performance for motorsports. Additionally, we present a comprehensive three-phase rapid prototyping approach to develop and showcase the functions of race car modifications, aiming to demonstrate their efficacy and gather valuable feedback from potential customers. By recognizing the significance of nurturing beginners’ interest and skill development, the motorsports community can encourage wider participation and ensure a vibrant future for the sport. .展开更多
The purpose of this paper is to present the rationale for registration of the Seated Condylar Position (SCP)/Centric Relation (CR) position of the condyles.
The purpose of this paper is to present the technique for registration of the Seated Condylar Position (SCP)/Centric Relation (CR) position of the condyles: a two-piece wax bite registration with deprogramming and no ...The purpose of this paper is to present the technique for registration of the Seated Condylar Position (SCP)/Centric Relation (CR) position of the condyles: a two-piece wax bite registration with deprogramming and no mandibular manipulation.展开更多
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
文摘The library seating management system is an important part of the library’s modern services. The system is based on the Spring and Spring Boot framework, and the system realizes a series of functions such as real-time query, reservation, and cancellation of seat resources, providing users with great convenience. With a simple operation, users can know the availability of seats in the library in real time and reserve them according to their needs. At the same time, the system also provides rich management functions, enabling administrators to easily configure and manage seat resources. The addition, deletion, modification and review of users, the generation of seats, the viewing of user usage records, and the addition or deletion of points for users’ usage can also be carried out. This not only improves the management efficiency, but also provides more scientific and accurate data support for the management of the library. The system not only optimizes the user experience, but also promotes the scientific management and efficient utilization of library resources, and provides strong support for the modern services of the library.
基金This work was co-funded by the German Federal Ministry for Economic Affairs and Energy(BMWi)under contract number 02E11627by the European Commission(EC)from the Euro-pean Union’s Horizon 2020 research and innovationprogram under Grant No.847593.
文摘Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The samples were extracted from four lithological facies relatively rich in clay mineral,carbonate and quartz,respectively.The self-sealing of fractures was measured by fracture closure,water permeability variation,gas penetration,and recovery of gas-induced pathways.Most of the fractured samples exhibited a dramatic reduction inwater permeability to low levels that is close to that of intact rock,depending on their mineralogical composition,fracture intensity,confining stress,and load duration.The self-sealing capacity of the clay-rich samples is higher than that of the carbonate-rich and sandy ones.Significant effects of sample size and fracture intensity were identified.The sealed fractures become gas-tight for certain in-jection pressures.However,the measured gas breakthrough pressures are still lower than the confining stresses.The gas-induced pathways can recover when contacting water.These important findings imply that fractures in such indurated claystones can effectively recover to hinder water transport but allow gas release under relatively low pressures without compromising the rock integrity.
基金This research was funded by the National Natural Science Foundation of China(grant number 51675534).
文摘The sleeve sealing ball seat is one of the important components in the multistage fracturing process of horizontal wells.The erosion and wear of the surface will decrease the sealing performance of the fracturing ball and the ball seat.This leads to pressure leakage during the fracturing process and fracturing failure.In this paper,combined with the actual ball seat materials and working conditions during the fracturing process,the erosion tests of ductile iron and tungsten carbide materials under different erosion speeds,angles,and mortar concentrations are carried out.Then the erosion test results were analyzed by mathematical fitting,and a set of erosion models suitable for sliding sleeve setting ball seat materials were innovatively established.For the first time,this paper combines the erosion model obtained from the experiment and the computational fluid dynamics(CFD)with Fluent software to simulate the erosion of the ball seat.Based on the simulation results,the morphology of the sliding sleeve seat ball after erosion is predicted.Through analysis of the test and simulation results,it is showed that the erosion rate of tungsten carbide material is lower and the wear resistance is better under the condition of small angle erosion.This research can offer a strong basis for fracturing site selection,surface treatment methods,and prediction of failure time of ball seats.
文摘Automotive seat design presents an ongoing challenge as it involves balancing conflicting customer requirements, ranging from comfort and support to adaptability for diverse body types and custom-molded fit. Original equipment manufacturers often struggle to address the diverse needs dictated by the environment of use in automotive seat design. In response to these deficiencies, this paper employs the design thinking approach/model to explore the gaps in automotive seats comprehensively. The study provides valuable recommendations and documents the exploratory work carried out to bridge these gaps and enhance the overall automotive seat design. By utilizing design thinking principles, this research aims to pave the way for innovative solutions that meet the evolving demands of drivers, ensuring a more comfortable and safer driving experience for daily driving, and better performance for motorsports. Additionally, we present a comprehensive three-phase rapid prototyping approach to develop and showcase the functions of race car modifications, aiming to demonstrate their efficacy and gather valuable feedback from potential customers. By recognizing the significance of nurturing beginners’ interest and skill development, the motorsports community can encourage wider participation and ensure a vibrant future for the sport. .
文摘The purpose of this paper is to present the rationale for registration of the Seated Condylar Position (SCP)/Centric Relation (CR) position of the condyles.
文摘The purpose of this paper is to present the technique for registration of the Seated Condylar Position (SCP)/Centric Relation (CR) position of the condyles: a two-piece wax bite registration with deprogramming and no mandibular manipulation.