Various approaches and models are used in deterministic codes to treat the resonance self-shielding behavior of cross-sections.The accuracy of the models used has a significant effect on the precision of calculations;...Various approaches and models are used in deterministic codes to treat the resonance self-shielding behavior of cross-sections.The accuracy of the models used has a significant effect on the precision of calculations;hence it is essential to select the best self-shielding method that yields accurate results within a reasonable computational time.In the present paper,the performance of the statistical subgroup method and the subgroup projection method associated with the DRAGON5 code is assessed during the burnup of a fuel pin.Two types of fuel are investigated:UO2,and PuO2-UO2.The accuracy of the methods is determined by calculating the variation of the infinite multiplication factor and the reaction rates during burnup,and then the results are compared to the stochastic MCNP6 code.It is indicated that the performance of both methods in treating the resonance self-shielding effect is satisfactory and that the subgroup projection method has a better performance during burnup calculations.展开更多
This paper describes the structure and work principle of a miniature and self-shielding electron-beam radiation processing system.Centering on the miniaturization and self-shielding,this system has been manufactured. ...This paper describes the structure and work principle of a miniature and self-shielding electron-beam radiation processing system.Centering on the miniaturization and self-shielding,this system has been manufactured. Test results show that the energy of the electron beam is 2.5MeV,the average power of the beam is 1.2kW,the width of scanning is 300ram,and the radiation emission from this equipment to the environment is under 2uSv/h.This system is reliable,safe,easy to operate and suitable for online radiation processing for manufacture or setting on a vehicle.展开更多
Herein,we adopt a simple supramolecular strategy to effectively control the tautomerism of ureidopyrimidinone(UPy)moiety and ultimately realize the complete arrangement of enol configuration.The obtained UPy derivativ...Herein,we adopt a simple supramolecular strategy to effectively control the tautomerism of ureidopyrimidinone(UPy)moiety and ultimately realize the complete arrangement of enol configuration.The obtained UPy derivatives containing self-complementary quadruple hydrogen bonding interactions can spontaneously self-assemble towards the formation of well-controlled,self-organized supramolecular nanostructure morphologies in both chloroform and water.The resulting aggregates had been fully characterized by various spectroscopy(absorption,emission)and microscopy(TEM,SEM and AFM)studies.It is anticipated that this study can provide an exact and excellent monomeric unit for controllable and precise supramolecular polymerization.The results achieved here also demonstrate the utility and feasibility of multiple hydrogen bonds to direct the self-assembly of small-molecule building blocks in aqueous media,which provides a strategy for the construction of well-defined and stable supramolecular architectures with chemical functionalities and physical properties as advanced materials for biological applications.展开更多
Large neutron absorption resonances in the nuclides present in irradiation samples reduce the irradiating neutron flux at energies close to a resonance.In neutron activation analysis of optically thick samples with re...Large neutron absorption resonances in the nuclides present in irradiation samples reduce the irradiating neutron flux at energies close to a resonance.In neutron activation analysis of optically thick samples with resonant isotopes,this self-shielding effect can be significant,and must be accounted for to ensure accurate measurements.Here we show that an ensemble artificial neural network can be used to accurately predict the epithermal selfshielding factors in wires composed of up to 57 nuclides.Importantly,the neural network can account for resonance interference that affects the self-shielding in samples containing nuclides with large overlapping resonances.We use Monte Carlo simulations of sample wires irradiated in a thermal neutron spectrum to create the data for training the neural network and validate its predictions.A Gaussian negative log likelihood loss function is combined with the ensemble to estimate the confidence in the predicted self-shielding factors when ground-truth data are unavailable.展开更多
The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30...The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30 V and current of 260 A.The deposition efficiency keeps over 90%for both 12 mm and 8 mm narrow gap welding.For 12 mm narrow gap welding,when the voltage is 28 V and the current is 264 A(or 286 A),no pores are found in the narrow gap weld.In the continuous welding process,manganese vapor,aluminum vapor and CO continuously generate to form gasbag and occupy the narrow gap space,thus protecting the droplet and molten pool from the invasion of air.展开更多
The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by...The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.展开更多
Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires...Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires are studied. The results show that with theincrease of Fe_2O_3 in the mix, the melting point of the pretreated mix is increased. LiBaF_3 andBaFe_(12)O_(19), which are very low in inherent moisture, are formed after the pretreatment. Themechanical properties are evaluated to the weld metals. The low temperature notch toughness of theweld metals is increased linearly with the Fe_2O_3 content in the flux due to the balance betweenFe_2O_3 and residual Al in the weld metal. The optimum Fe_2O_3 content in flux is 2.5 percent approx3.5 percent.展开更多
The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content...The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.展开更多
Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the a...Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the addition of CeF3. The main non-metallic inclusions in weld metal are AlN and Al2O3. CeF3 can refine non-metallic inclusions and reduce the amount of large size inclusions, which is attributed to the inclusion floating behavior during the solidification of weld metal. The low temperature impact toughness is improved by adding suitable amount of CeF3 in the flux.展开更多
Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen ...Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.展开更多
By measuring the content of oxygen and nitrogen in welds of six kinds of self-shielded flux-cored wires,the effect of oxygen on nitrogen content in weld is studied and the different absorptive mechanisms of nitrogen a...By measuring the content of oxygen and nitrogen in welds of six kinds of self-shielded flux-cored wires,the effect of oxygen on nitrogen content in weld is studied and the different absorptive mechanisms of nitrogen at a low oxygen level([O] lower than 0.02%) and a high oxygen level ([O] higher than 0.03%) have been discovered.The results indicate that the content of nitrogen in weld can be made lowest by modifying the composition of flux and controlling the content of oxygen to the range of 0.02%~0.03%.展开更多
Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was...Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was added to its shim to compensate for excess reactivity loss. The thermal, epithermal and fast neutron fluxes were determined by the method of foil activation. The experimental samples with and without a cadmium cover of 1-mm thickness were irradiated in the isotropic neutron field of the irradiation sites of Ghana Research Reactor-1 facility. The induced activities in the sample were measured by gamma ray spectrometry with a high purity germanium detector. The necessary correction for gamma attenuation, thermal neutrons and resonance neutron self-shielding effects were taken into account during the experimental analysis. By defining cadmium cutoff energy of 0.55eV, Al-0.1% Au wires of negligible thickness were irradiated at 3kW to determine the neutron fluxes of two irradiation channels, outer channel 7 and inner channel 2 whose Neutron Shaping Factor (α) were found to be (0.037 ± 0.001) and (–0.961 ± 0.034). The neutron flux ratios at the inner irradiation site 2 were found to be, (25.308 ± 3.201) for thermal to epithermal neutrons flux, (0.179 ± 0.021) for epithermal to fast neutrons flux and (4.528 ± 0.524) for thermal to fast neutrons flux, in the outer irradiation site 7, the neutron flux ratios were found to be, (40.865 ± 3.622) for thermal to epithermal neutrons flux, (0.286 ± 0.025) for epithermal to fast neutrons flux and (11.680 ± 1.030) for thermal to fast neutrons flux.展开更多
A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is exp...A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is experimentally realized using a thin epitaxial BCD process. Compared with the MFFP HVI structure, the proposed NFFP HVI structure shows simpler process and lower cost. The high side offset voltage in the half bridge gate drive IC with the NFFP HVI structure is almost as same as that with the self-shielding structure.展开更多
Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical ...Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical degradation of methylmercury (MeHg) can produce mass- independent fractionation (MIF) of odd Hg isotopes (odd- MIF), which had been largely reported in variable natural samples and laboratory experiments, and was thought to be caused by either nuclear volume effect or magnetic isotope effect. Recently, intriguing MIF of even Hg isotopes (even- MIF) had been determined in natural samples mainly related to the atmosphere. Though photo-oxidation in the tropopause (inter-layer between the stratosphere and the troposphere) and neutron capture in space were thought to be the possible processes causing even-MIF, the exact mechanism triggering significant even Hg isotope anomaly is still unclear. Even-MIF could provide useful information about the atmospheric chemistry and related climate changes, and the biogeochemical cycle of Hg.展开更多
文摘Various approaches and models are used in deterministic codes to treat the resonance self-shielding behavior of cross-sections.The accuracy of the models used has a significant effect on the precision of calculations;hence it is essential to select the best self-shielding method that yields accurate results within a reasonable computational time.In the present paper,the performance of the statistical subgroup method and the subgroup projection method associated with the DRAGON5 code is assessed during the burnup of a fuel pin.Two types of fuel are investigated:UO2,and PuO2-UO2.The accuracy of the methods is determined by calculating the variation of the infinite multiplication factor and the reaction rates during burnup,and then the results are compared to the stochastic MCNP6 code.It is indicated that the performance of both methods in treating the resonance self-shielding effect is satisfactory and that the subgroup projection method has a better performance during burnup calculations.
文摘This paper describes the structure and work principle of a miniature and self-shielding electron-beam radiation processing system.Centering on the miniaturization and self-shielding,this system has been manufactured. Test results show that the energy of the electron beam is 2.5MeV,the average power of the beam is 1.2kW,the width of scanning is 300ram,and the radiation emission from this equipment to the environment is under 2uSv/h.This system is reliable,safe,easy to operate and suitable for online radiation processing for manufacture or setting on a vehicle.
基金supported by the National Natural Science Foundation of China(Nos.22071078,92156012 and 21722403)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,No.2019TD-36)。
文摘Herein,we adopt a simple supramolecular strategy to effectively control the tautomerism of ureidopyrimidinone(UPy)moiety and ultimately realize the complete arrangement of enol configuration.The obtained UPy derivatives containing self-complementary quadruple hydrogen bonding interactions can spontaneously self-assemble towards the formation of well-controlled,self-organized supramolecular nanostructure morphologies in both chloroform and water.The resulting aggregates had been fully characterized by various spectroscopy(absorption,emission)and microscopy(TEM,SEM and AFM)studies.It is anticipated that this study can provide an exact and excellent monomeric unit for controllable and precise supramolecular polymerization.The results achieved here also demonstrate the utility and feasibility of multiple hydrogen bonds to direct the self-assembly of small-molecule building blocks in aqueous media,which provides a strategy for the construction of well-defined and stable supramolecular architectures with chemical functionalities and physical properties as advanced materials for biological applications.
文摘Large neutron absorption resonances in the nuclides present in irradiation samples reduce the irradiating neutron flux at energies close to a resonance.In neutron activation analysis of optically thick samples with resonant isotopes,this self-shielding effect can be significant,and must be accounted for to ensure accurate measurements.Here we show that an ensemble artificial neural network can be used to accurately predict the epithermal selfshielding factors in wires composed of up to 57 nuclides.Importantly,the neural network can account for resonance interference that affects the self-shielding in samples containing nuclides with large overlapping resonances.We use Monte Carlo simulations of sample wires irradiated in a thermal neutron spectrum to create the data for training the neural network and validate its predictions.A Gaussian negative log likelihood loss function is combined with the ensemble to estimate the confidence in the predicted self-shielding factors when ground-truth data are unavailable.
基金supported by China Postdoctoral Science Foundation Funded Project(Grant No.2016M601753)Natural Science Foundation of Jiangsu Province(Grant No.BK20201453)Major Projects of Natural Science Research in Colleges and Universities in Jiangsu(Grant No.19KJA460009).
文摘The slag-free self-shielded flux-cored wire was fabricated to apply for the narrow gap welding.The results showed that narrow gap welding shows lower welding spatter compared with hardfacing except under voltage of 30 V and current of 260 A.The deposition efficiency keeps over 90%for both 12 mm and 8 mm narrow gap welding.For 12 mm narrow gap welding,when the voltage is 28 V and the current is 264 A(or 286 A),no pores are found in the narrow gap weld.In the continuous welding process,manganese vapor,aluminum vapor and CO continuously generate to form gasbag and occupy the narrow gap space,thus protecting the droplet and molten pool from the invasion of air.
文摘The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.
文摘Five experimental self-shielded flux cored wires are fabricated withdifferent amount of Fe_2O_3 in the flux. The effect of Fe_2O_3 on welding technology and mechanicalproperties of weld metals deposited by these wires are studied. The results show that with theincrease of Fe_2O_3 in the mix, the melting point of the pretreated mix is increased. LiBaF_3 andBaFe_(12)O_(19), which are very low in inherent moisture, are formed after the pretreatment. Themechanical properties are evaluated to the weld metals. The low temperature notch toughness of theweld metals is increased linearly with the Fe_2O_3 content in the flux due to the balance betweenFe_2O_3 and residual Al in the weld metal. The optimum Fe_2O_3 content in flux is 2.5 percent approx3.5 percent.
文摘The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.
文摘Effects of CeF3 on properties of self-shielded flux cored wire including welding process, inclusions in weld metal and mechanical properties are systematically studied. Welding smoke and spatter are reduced with the addition of CeF3. The main non-metallic inclusions in weld metal are AlN and Al2O3. CeF3 can refine non-metallic inclusions and reduce the amount of large size inclusions, which is attributed to the inclusion floating behavior during the solidification of weld metal. The low temperature impact toughness is improved by adding suitable amount of CeF3 in the flux.
文摘Prevention of nitrogen porosity in weld metal deposited with self-shielded flux cored wire with CaF2-TiO2-MgO slag system can be accomplished by using a 'killing agent' such as titanium to react with nitrogen dissolved in the weld metal. The amount of titanium needed to prevent porosity is calculated thermodynamically for various dissolved nitrogen levels. Experimental flux cored wires are used to verify the thermodynamic model. It is concluded that approximately 0.11 wt% titanium in the weld deposit is need to prevent nitrogen porosity when welding without externally applied shielding.
文摘By measuring the content of oxygen and nitrogen in welds of six kinds of self-shielded flux-cored wires,the effect of oxygen on nitrogen content in weld is studied and the different absorptive mechanisms of nitrogen at a low oxygen level([O] lower than 0.02%) and a high oxygen level ([O] higher than 0.03%) have been discovered.The results indicate that the content of nitrogen in weld can be made lowest by modifying the composition of flux and controlling the content of oxygen to the range of 0.02%~0.03%.
文摘Accurate neutron flux values in irradiation channels of research reactors are very essential to their usage. The total neutron flux of the Ghana Research Reactor-1(GHARR-1) was measured after a beryllium reflector was added to its shim to compensate for excess reactivity loss. The thermal, epithermal and fast neutron fluxes were determined by the method of foil activation. The experimental samples with and without a cadmium cover of 1-mm thickness were irradiated in the isotropic neutron field of the irradiation sites of Ghana Research Reactor-1 facility. The induced activities in the sample were measured by gamma ray spectrometry with a high purity germanium detector. The necessary correction for gamma attenuation, thermal neutrons and resonance neutron self-shielding effects were taken into account during the experimental analysis. By defining cadmium cutoff energy of 0.55eV, Al-0.1% Au wires of negligible thickness were irradiated at 3kW to determine the neutron fluxes of two irradiation channels, outer channel 7 and inner channel 2 whose Neutron Shaping Factor (α) were found to be (0.037 ± 0.001) and (–0.961 ± 0.034). The neutron flux ratios at the inner irradiation site 2 were found to be, (25.308 ± 3.201) for thermal to epithermal neutrons flux, (0.179 ± 0.021) for epithermal to fast neutrons flux and (4.528 ± 0.524) for thermal to fast neutrons flux, in the outer irradiation site 7, the neutron flux ratios were found to be, (40.865 ± 3.622) for thermal to epithermal neutrons flux, (0.286 ± 0.025) for epithermal to fast neutrons flux and (11.680 ± 1.030) for thermal to fast neutrons flux.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60436030.
文摘A NFFP HVI structure which implements high breakdown voltage without using additional FFP and process steps is proposed in this paper. An 850 V high voltage half bridge gate drive IC with the NFFP HVI structure is experimentally realized using a thin epitaxial BCD process. Compared with the MFFP HVI structure, the proposed NFFP HVI structure shows simpler process and lower cost. The high side offset voltage in the half bridge gate drive IC with the NFFP HVI structure is almost as same as that with the self-shielding structure.
基金supported by the Natural Science Foundation of China(41273023U1301231)+2 种基金the National Basic Research Program of China(2013CB430001)the Strategic Priority Research Program(XDB05030302)the‘‘Hundred Talent’’Project of Chinese Academy of Sciences and SKLEG
文摘Practically all physical, chemical, and biologi- cal processes can induce mass-dependent fractionation of mercury (Hg) isotopes. A few special processes such as photochemical reduction of Hg(Ⅱ) and photochemical degradation of methylmercury (MeHg) can produce mass- independent fractionation (MIF) of odd Hg isotopes (odd- MIF), which had been largely reported in variable natural samples and laboratory experiments, and was thought to be caused by either nuclear volume effect or magnetic isotope effect. Recently, intriguing MIF of even Hg isotopes (even- MIF) had been determined in natural samples mainly related to the atmosphere. Though photo-oxidation in the tropopause (inter-layer between the stratosphere and the troposphere) and neutron capture in space were thought to be the possible processes causing even-MIF, the exact mechanism triggering significant even Hg isotope anomaly is still unclear. Even-MIF could provide useful information about the atmospheric chemistry and related climate changes, and the biogeochemical cycle of Hg.