Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry...Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in...Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.展开更多
The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunnelin...The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunneling (SET), tunneling phase logic (TPL), spintronic devices, etc., are some of the nanotechnologies that are being considered as possible replacements for CMOS. In these nanotechnologies, the basic logic units used to implement circuits are majority and/or minority gates. Several majority/minority logic circuit synthesis methods have been proposed. In this paper, we give a comparative study of the existing majority/minority logic circuit synthesis methods that are capable of synthesizing multi-input multi-output Boolean functions. Each of these methods is discussed in detail. The optimization priorities given to different factors such as gates, levels, inverters, etc., vary with technologies. Based on these optimization factors, the results obtained from different synthesis methods are compared. The paper also analyzes the optimization capabilities of different methods and discusses directions for future research in the synthesis of majority/minority logic networks.展开更多
Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum...Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.展开更多
Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, a...Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, and devices, are the key areas of research interests in green technologies. To be green means lower power and higher energy efficiency in the user's side and better management of energy sources in the provider's side. In the recent several years, the energy-efficient devices, circuits, and systems have received considerable attention in both academia and industry. It has been a clear trend that it is and will continue to be an area of extensive research interests in the coming years. In connection with the above view, and being invited by the Editor, Ms. Jasmine Xuan Xie, we have proposed this Special Section on Green Technologies:展开更多
Based on the analysis of the existing hard IP core testing technology, the hard IP core nondestructive testing technology was studied, according to the verification requirements of a large number of hard IP core preci...Based on the analysis of the existing hard IP core testing technology, the hard IP core nondestructive testing technology was studied, according to the verification requirements of a large number of hard IP core precise and fast testing. Combined with the external automatic test equipment (ATE) and the on-chip evaluation circuit, a general evaluation system of simulating user system on chip (SOC) with signal timing calibration and compensation by software and hardware compensation structures were introduced to realize the function, performance and reliability verification of the hard IP core. The design and verification of a random access memory (SRAM) hard IP core based on an on-chip evaluation circuit was actually completed, and the key timing parameters of the hard IP core were tested. The address setup time parameter was taken as an example to analyze the specific testing method and the test results were obtained. With this testing technology, the accuracy of testing the timing parameters of hard IP core can reach pS level, compared with the hard IP core packaged test, the accuracy of the result data is fully reflected.展开更多
Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integ...Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integrated circuit (IC)is designed and realized in CSMC ' s 0. 6 μm CMOS ( complementary metal-oxide-semiconductor transistor ) technology. The IC consists of a neural signal detection circuit with an adjustable gain, a buffer, and a function electrical stimulation (FES) circuit. The neural signal regenerating IC occupies a die area of 1.42 mm × 1.34 mm. Under a dual supply voltage of ±2. 5 V, the DC power consumption is less than 10 mW. The on-wafer measurement results are as follows: the output resistor is 118 ml), the 3 dB bandwidth is greater than 30 kHz, and the gain can be variable from 50 to 90 dB. The circuit is used for in-vivo experiments on the rat' s sciatic nerve as well as on the spinal cord with the cuff type electrode array and the twin-needle electrode. The neural signal is successfully regenerated both on a rat' s sciatic nerve bundle and on the spinal cord.展开更多
Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches fo...Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches for integration of III–V gain media with silicon PICs.Similar approaches are also being considered for ferroelectrics to enable larger RF modulation bandwidths,higher linearity,lower optical loss integrated optical modulators on chip.In this paper,we review existing integration strategies ofⅢ-Ⅴmaterials and present a route towards hybrid integration of bothⅢ-Ⅴand ferroelectrics on the same chip.We show that adiabatic transformation of the optical mode between hybrid ferroelectric and silicon sections enables efficient transfer of optical modal energies for maximum overlap of the optical mode with the ferroelectric media,similar to approaches adopted to maximize optical overlap with the gain section,thereby reducing lasing thresholds for hybridⅢ-Ⅴintegration with silicon PICs.Preliminary designs are presented to enable a foundry compatible hybrid integration route of diverse functionalities on silicon PICs.展开更多
A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main dischar...A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.展开更多
In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmeg...In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.展开更多
This paper presents a novel current-mode biquadratic circuit employing only plus type DVCCs(differential voltage current conveyors).The circuit enables LP(low-pass),BP(band-pass),HP(high-pass),BS(band-stop)and AP(all-...This paper presents a novel current-mode biquadratic circuit employing only plus type DVCCs(differential voltage current conveyors).The circuit enables LP(low-pass),BP(band-pass),HP(high-pass),BS(band-stop)and AP(all-pass)responses by the selection and addition of the input and output currents without any component matching constraints.Moreover the circuit parametersω0 and Q can be set orthogonally adjusting the circuit components.A design example is given together with simulation results by PSPICE.展开更多
Along with the completion of HGP (human genome project), huge amounts of genetic data constantly emerge. Research suggests that genes are not in independent existence and the expression of a gene will promote or inh...Along with the completion of HGP (human genome project), huge amounts of genetic data constantly emerge. Research suggests that genes are not in independent existence and the expression of a gene will promote or inhibit the expression of another gene; if the expression of a gene makes the biochemical environment of ceils changed, the expression of a series of genes will be affected. In order to get a better understanding of the relationship between genes, all sorts of gene regulatory network models have been established by scientists. In this paper, a variety of gene regulatory networks are first introduced according to the process of this subject research, and then the most basic network (i.e. Boolean network) is emphatically analyzed, and then a new method (i.e. Boolean network based on the theory of circuit) to describe Boolean network is drawn forth. After the shortcomings of the Boolean network proposed in the past are analyzed, a simulation circuit Boolean model is established using EDA technology in order to improve the Boolean network.展开更多
针对NFC(near field communication)天线的交互效率不高,导致传输信号不稳定的问题,可以分析天线的参数与电路的结构,使天线性能达到最优。利用Ansoft HFSS(high frequency structure simulator)进行环形天线的建模与分析,讨论了天线的...针对NFC(near field communication)天线的交互效率不高,导致传输信号不稳定的问题,可以分析天线的参数与电路的结构,使天线性能达到最优。利用Ansoft HFSS(high frequency structure simulator)进行环形天线的建模与分析,讨论了天线的结构参数对天线性能的影响,分析了RLC电路对天线电感的影响,设计了串联匹配电路。对天线的带宽进行了优化,并对设计的耦合天线传输距离进行仿真,确定最佳耦合距离,提高天线的品质因数。结果表明:天线的回波损耗降低至-27.25 dB,最佳耦合距离为20 mm。展开更多
文摘Submicron CMOS IC technology, including triple layer resist lithography technology, RIE, LDD, Titanium Salicide, shallow junction, thin gate oxide, no bird's beak isolation and channel's multiple implantation doping technology have been developed. 0.50μm. CMOS integrated circuits have been fabricated using this submicron CMOS process.
文摘Electronic design automation(EDA)technology is the product of the computer age and finds its foundation in CAD,CAM,CAT,and CAE.EDA is a kind of auxiliary tool in the design process,which requires the designer to carry out the file design work using hardware language as the foundation.Subsequently,the computer system automatically compiles and integrates the file to achieve simulation goals,and can complete the programming download of the target chip.At present,this technology is widely used in the communication of electronic circuits.This paper summarizes EDA technology and analyzes its specific application in communication electronic circuits,aiming at promoting the application of CDA technology and promoting the further development of the communication field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金We gratefully acknowledge support from the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20151486).
文摘Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.
文摘The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunneling (SET), tunneling phase logic (TPL), spintronic devices, etc., are some of the nanotechnologies that are being considered as possible replacements for CMOS. In these nanotechnologies, the basic logic units used to implement circuits are majority and/or minority gates. Several majority/minority logic circuit synthesis methods have been proposed. In this paper, we give a comparative study of the existing majority/minority logic circuit synthesis methods that are capable of synthesizing multi-input multi-output Boolean functions. Each of these methods is discussed in detail. The optimization priorities given to different factors such as gates, levels, inverters, etc., vary with technologies. Based on these optimization factors, the results obtained from different synthesis methods are compared. The paper also analyzes the optimization capabilities of different methods and discusses directions for future research in the synthesis of majority/minority logic networks.
基金supported in part by the National Natural Science Foundation of China (51937009 and 51877166)the Key Research and Development Program of Shaanxi Province (2019ZDLGY18-04)
文摘Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.
文摘Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, and devices, are the key areas of research interests in green technologies. To be green means lower power and higher energy efficiency in the user's side and better management of energy sources in the provider's side. In the recent several years, the energy-efficient devices, circuits, and systems have received considerable attention in both academia and industry. It has been a clear trend that it is and will continue to be an area of extensive research interests in the coming years. In connection with the above view, and being invited by the Editor, Ms. Jasmine Xuan Xie, we have proposed this Special Section on Green Technologies:
文摘Based on the analysis of the existing hard IP core testing technology, the hard IP core nondestructive testing technology was studied, according to the verification requirements of a large number of hard IP core precise and fast testing. Combined with the external automatic test equipment (ATE) and the on-chip evaluation circuit, a general evaluation system of simulating user system on chip (SOC) with signal timing calibration and compensation by software and hardware compensation structures were introduced to realize the function, performance and reliability verification of the hard IP core. The design and verification of a random access memory (SRAM) hard IP core based on an on-chip evaluation circuit was actually completed, and the key timing parameters of the hard IP core were tested. The address setup time parameter was taken as an example to analyze the specific testing method and the test results were obtained. With this testing technology, the accuracy of testing the timing parameters of hard IP core can reach pS level, compared with the hard IP core packaged test, the accuracy of the result data is fully reflected.
基金The National Natural Science Foundation of China(No.90307013,90707005)
文摘Based on the 4-channel neural signal regeneration system which is realized by using discrete devices and successfully used for in-vivo experiments on rats and rabbits, a single channel neural signal regeneration integrated circuit (IC)is designed and realized in CSMC ' s 0. 6 μm CMOS ( complementary metal-oxide-semiconductor transistor ) technology. The IC consists of a neural signal detection circuit with an adjustable gain, a buffer, and a function electrical stimulation (FES) circuit. The neural signal regenerating IC occupies a die area of 1.42 mm × 1.34 mm. Under a dual supply voltage of ±2. 5 V, the DC power consumption is less than 10 mW. The on-wafer measurement results are as follows: the output resistor is 118 ml), the 3 dB bandwidth is greater than 30 kHz, and the gain can be variable from 50 to 90 dB. The circuit is used for in-vivo experiments on the rat' s sciatic nerve as well as on the spinal cord with the cuff type electrode array and the twin-needle electrode. The neural signal is successfully regenerated both on a rat' s sciatic nerve bundle and on the spinal cord.
文摘Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches for integration of III–V gain media with silicon PICs.Similar approaches are also being considered for ferroelectrics to enable larger RF modulation bandwidths,higher linearity,lower optical loss integrated optical modulators on chip.In this paper,we review existing integration strategies ofⅢ-Ⅴmaterials and present a route towards hybrid integration of bothⅢ-Ⅴand ferroelectrics on the same chip.We show that adiabatic transformation of the optical mode between hybrid ferroelectric and silicon sections enables efficient transfer of optical modal energies for maximum overlap of the optical mode with the ferroelectric media,similar to approaches adopted to maximize optical overlap with the gain section,thereby reducing lasing thresholds for hybridⅢ-Ⅴintegration with silicon PICs.Preliminary designs are presented to enable a foundry compatible hybrid integration route of diverse functionalities on silicon PICs.
文摘A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.
基金Project(041010) supported by Start-Up Foundation of Northwest University,ChinaProject(UIT/39) supported by University-Industry Collaboration Program from the Innovation and Technology Fund of Hong Kong,China
文摘In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.
文摘This paper presents a novel current-mode biquadratic circuit employing only plus type DVCCs(differential voltage current conveyors).The circuit enables LP(low-pass),BP(band-pass),HP(high-pass),BS(band-stop)and AP(all-pass)responses by the selection and addition of the input and output currents without any component matching constraints.Moreover the circuit parametersω0 and Q can be set orthogonally adjusting the circuit components.A design example is given together with simulation results by PSPICE.
文摘Along with the completion of HGP (human genome project), huge amounts of genetic data constantly emerge. Research suggests that genes are not in independent existence and the expression of a gene will promote or inhibit the expression of another gene; if the expression of a gene makes the biochemical environment of ceils changed, the expression of a series of genes will be affected. In order to get a better understanding of the relationship between genes, all sorts of gene regulatory network models have been established by scientists. In this paper, a variety of gene regulatory networks are first introduced according to the process of this subject research, and then the most basic network (i.e. Boolean network) is emphatically analyzed, and then a new method (i.e. Boolean network based on the theory of circuit) to describe Boolean network is drawn forth. After the shortcomings of the Boolean network proposed in the past are analyzed, a simulation circuit Boolean model is established using EDA technology in order to improve the Boolean network.
文摘针对NFC(near field communication)天线的交互效率不高,导致传输信号不稳定的问题,可以分析天线的参数与电路的结构,使天线性能达到最优。利用Ansoft HFSS(high frequency structure simulator)进行环形天线的建模与分析,讨论了天线的结构参数对天线性能的影响,分析了RLC电路对天线电感的影响,设计了串联匹配电路。对天线的带宽进行了优化,并对设计的耦合天线传输距离进行仿真,确定最佳耦合距离,提高天线的品质因数。结果表明:天线的回波损耗降低至-27.25 dB,最佳耦合距离为20 mm。
基金Acknowledgements: This work is supported by National Natural Science Foundation of China (No. 60673084) and Hunan Provincial Natural Science Foundation of China (No. 06JJ4075).