In this paper, we show that, for the three dimensional incompressible magnetohydro-dynamic equations, there exists only trivial backward self-similar solution in L^p(R^3) for p ≥ 3, under some smallness assumption ...In this paper, we show that, for the three dimensional incompressible magnetohydro-dynamic equations, there exists only trivial backward self-similar solution in L^p(R^3) for p ≥ 3, under some smallness assumption on either the kinetic energy of the self-similar solution related to the velocity field, or the magnetic field. Second, we construct a class of global unique forward self-similar solutions to the three-dimensional MHD equations with small initial data in some sense, being homogeneous of degree -1 and belonging to some Besov space, or the Lorentz space or pseudo-measure space, as motivated by the work in [5].展开更多
With the help of similarity transformation, we obtain analytical spatiotemporal self-similar solutions of the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation with time-dependent diffraction,...With the help of similarity transformation, we obtain analytical spatiotemporal self-similar solutions of the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation with time-dependent diffraction, nonlinearity, harmonic potential and gain or loss when two constraints are satisfied. These constraints between the system parameters hint that self-similar solutions form and transmit stably without the distortion of shape based on the exact balance between the diffraction, nonlinearity and the gain/loss. Based on these analytical results, we investigate the dynamic behaviours in a periodic distributed amplification system.展开更多
This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloc...This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloch and Smoczyk. We prove that all curves immersed in the plane which move in a self-similar manner under the HMCF are straight lines and circles. Moreover, it is found that a circle can either expand to a larger one and then converge to a point, or shrink directly and converge to a point, where the curvature approaches to infinity.展开更多
In this article, we consider a two-component nonlinear shallow water system, which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases. The local well-posedess for this equat...In this article, we consider a two-component nonlinear shallow water system, which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases. The local well-posedess for this equations is established. Some sufficient conditions for blow-up of the solutions in finite time are given. Moreover, by separation method, the self-similar solutions for the nonlinear shallow water equations are obtained, and which local or global behavior can be determined by the corresponding Emden equation.展开更多
An improved homogeneous balance principle and self-similar solutions to the cubic-quintic nonlinear Schroedinger and impose constraints on the functions describing dispersion, self-similar waves are presented.
In this paper we study a generalization of self-similar solutions. We show that just as for the solutions to the Navier-Stokes equations these supposedly singular solution reduce to the zero solution.
In this paper, we investigate the following partial differential equation, ut , where a > 0 and p> 1. When n(p-1)/2 > 1 andp > 3, we obtained a nontrivial non-negative global solution. Furthermore, on Sobo...In this paper, we investigate the following partial differential equation, ut , where a > 0 and p> 1. When n(p-1)/2 > 1 andp > 3, we obtained a nontrivial non-negative global solution. Furthermore, on Sobolev space W1,s(W2,s) with s > 1. a nonuniqueness result is established which shows that there exists a positive solution u(t,x) with u(t,x)→0 as t→0 in W1,s(W2,s). On the other hand, our result can be regarded as a generalization of conclusion of Haraux, A.and Weissler, F.B. in [5].展开更多
The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation....The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation. The resulting equation is then solved analytically and even exactly in some cases. Numerical simulations are provided for the cases in which there is no exact solution. Travelling wave solutions are also obtained.展开更多
In this article we will present pure three dimensional analytic solutions for the Navier-Stokes and the continuity equations in Cartesian coordinates. The key idea is the three-dimensional generalization of the well-k...In this article we will present pure three dimensional analytic solutions for the Navier-Stokes and the continuity equations in Cartesian coordinates. The key idea is the three-dimensional generalization of the well-known self-similar Ansatz of Barenblatt. A geometrical interpretation of the Ansatz is given also. The results are the Kummer functions or strongly related. Our final formula is compared with other results obtained from group theoretical approaches.展开更多
In this article,we are concerned with analytical solutions for a model of inviscid liquid-gas two-phase flow.On the basis of Yuen’s works[25,27–29]on self-similar solutions for compressible Euler equations,we presen...In this article,we are concerned with analytical solutions for a model of inviscid liquid-gas two-phase flow.On the basis of Yuen’s works[25,27–29]on self-similar solutions for compressible Euler equations,we present some special self-similar solutions for a model of inviscid liquid-gas two-phase flow in radial symmetry with and without rotation,and in elliptic symmetry without rotation.Some blowup phenomena and the global existence of the solutions obtained are classified.展开更多
By the theory of complex functions, a penny-shaped crack on axially symmetric propagating problems for composite materials, was studied. The general representations of the analytical solutions with arbitrary index of ...By the theory of complex functions, a penny-shaped crack on axially symmetric propagating problems for composite materials, was studied. The general representations of the analytical solutions with arbitrary index of self-similarity, were presented for fracture elastodynamics problems on axially symmetry by the ways of self-similarity under the ladder-shaped loads. The problems dealt with can be transformed into Riemann-Hilbert problems and their closed analytical solutions are obtained rather simple by this method. After those analytical solutions are utilized by using the method of rotational superposition theorem in conjunction with that of Smirnov-Sobolev, the solutions of arbitrary complicated problems can be obtained.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ...On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].展开更多
This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of inte...This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.展开更多
基金supported in part by The 973 key Program(2006CB805902)Knowledge Innovation Funds of CAS(KJCX3-SYW-S03),People’s Republic of China+1 种基金supported in part by the Zheng Ge Ru Foundation and Hong Kong RGC Earmarked Research Grantsa research grant from the Center on Nonlinear Studies, Northwest University
文摘In this paper, we show that, for the three dimensional incompressible magnetohydro-dynamic equations, there exists only trivial backward self-similar solution in L^p(R^3) for p ≥ 3, under some smallness assumption on either the kinetic energy of the self-similar solution related to the velocity field, or the magnetic field. Second, we construct a class of global unique forward self-similar solutions to the three-dimensional MHD equations with small initial data in some sense, being homogeneous of degree -1 and belonging to some Besov space, or the Lorentz space or pseudo-measure space, as motivated by the work in [5].
基金Project supported by the National Natural Science Foundations of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers (Grant No. 2009RC01)the Scientific Research and Developed Fund of Zhejiang Agricultural and Forestry University,China (Grant No. 2009FK42)
文摘With the help of similarity transformation, we obtain analytical spatiotemporal self-similar solutions of the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation with time-dependent diffraction, nonlinearity, harmonic potential and gain or loss when two constraints are satisfied. These constraints between the system parameters hint that self-similar solutions form and transmit stably without the distortion of shape based on the exact balance between the diffraction, nonlinearity and the gain/loss. Based on these analytical results, we investigate the dynamic behaviours in a periodic distributed amplification system.
基金supported in part by a grant from China Scholarship Councilthe National Natural Science Foundation of China(11301006)the Anhui Provincial Natural Science Foundation(1408085MA01)
文摘This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloch and Smoczyk. We prove that all curves immersed in the plane which move in a self-similar manner under the HMCF are straight lines and circles. Moreover, it is found that a circle can either expand to a larger one and then converge to a point, or shrink directly and converge to a point, where the curvature approaches to infinity.
基金supported by NSF of China (11071266)partially supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Educationpartially supported by the found of Chongqing Normal University (13XLB006)
文摘In this article, we consider a two-component nonlinear shallow water system, which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases. The local well-posedess for this equations is established. Some sufficient conditions for blow-up of the solutions in finite time are given. Moreover, by separation method, the self-similar solutions for the nonlinear shallow water equations are obtained, and which local or global behavior can be determined by the corresponding Emden equation.
基金Supported by Natural Science Foundation of Zhejiang Province of China under Grant Nos.Y604106 and Y606182the Special Foundation of "University Talent Indraught Engineering" of Guangdong Province of China under Grant No.GDU2009109the Key Academic Discipline Foundation of Guangdong Shaoguan University under Gant No.KZ2009001
文摘An improved homogeneous balance principle and self-similar solutions to the cubic-quintic nonlinear Schroedinger and impose constraints on the functions describing dispersion, self-similar waves are presented.
文摘In this paper we study a generalization of self-similar solutions. We show that just as for the solutions to the Navier-Stokes equations these supposedly singular solution reduce to the zero solution.
文摘In this paper, we investigate the following partial differential equation, ut , where a > 0 and p> 1. When n(p-1)/2 > 1 andp > 3, we obtained a nontrivial non-negative global solution. Furthermore, on Sobolev space W1,s(W2,s) with s > 1. a nonuniqueness result is established which shows that there exists a positive solution u(t,x) with u(t,x)→0 as t→0 in W1,s(W2,s). On the other hand, our result can be regarded as a generalization of conclusion of Haraux, A.and Weissler, F.B. in [5].
文摘The Lin-Reissner-Tsien equation describes unsteady transonic flows under the transonic approximation. In the present paper, the equation is reduced to an ordinary differential equation via a similarity transformation. The resulting equation is then solved analytically and even exactly in some cases. Numerical simulations are provided for the cases in which there is no exact solution. Travelling wave solutions are also obtained.
文摘In this article we will present pure three dimensional analytic solutions for the Navier-Stokes and the continuity equations in Cartesian coordinates. The key idea is the three-dimensional generalization of the well-known self-similar Ansatz of Barenblatt. A geometrical interpretation of the Ansatz is given also. The results are the Kummer functions or strongly related. Our final formula is compared with other results obtained from group theoretical approaches.
基金supported by the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(2019GGJS176)the Natural Science Foundation of Henan Province Science and Technology Department(162300410077)+3 种基金the Outstanding Youth Foundation of Science and Technology Innovation of Henan Province(2018JQ0004)the Aeronautical Science Foundation of China(2017ZD55014)the Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions(20zx003)the Internal Research Grant from the Education University of Hong Kong(RG 15/2018-2019R)。
文摘In this article,we are concerned with analytical solutions for a model of inviscid liquid-gas two-phase flow.On the basis of Yuen’s works[25,27–29]on self-similar solutions for compressible Euler equations,we present some special self-similar solutions for a model of inviscid liquid-gas two-phase flow in radial symmetry with and without rotation,and in elliptic symmetry without rotation.Some blowup phenomena and the global existence of the solutions obtained are classified.
文摘By the theory of complex functions, a penny-shaped crack on axially symmetric propagating problems for composite materials, was studied. The general representations of the analytical solutions with arbitrary index of self-similarity, were presented for fracture elastodynamics problems on axially symmetry by the ways of self-similarity under the ladder-shaped loads. The problems dealt with can be transformed into Riemann-Hilbert problems and their closed analytical solutions are obtained rather simple by this method. After those analytical solutions are utilized by using the method of rotational superposition theorem in conjunction with that of Smirnov-Sobolev, the solutions of arbitrary complicated problems can be obtained.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金Supported by the National Natural Science Foundation of China(12261023,11861023)the Foundation of Science and Technology project of Guizhou Province of China([2018]5769-05)。
文摘On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].
文摘This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.