During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, an...Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.展开更多
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ...In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu M...Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu Maternal and Child Care Service Center of Guangzhou)from January 2022 to December 2023 were selected and randomly divided into two groups,with 48 cases in the experimental group and 49 in the control group.The experimental group was treated with modified non-traumatic filling techniques,while the control group was treated with conventional filling techniques.Observation indicators such as the total effectiveness of the treatment,incidence of adverse events,treatment compliance,and pain scores were analyzed after the intervention.Result:After intervention,the total effectiveness of the treatment in the experimental group was higher than that in the control group(P<0.05).The incidence of adverse events in the experimental group was lower than that of the control group(P<0.05).The treatment compliance of patients in the experimental group was higher than that in the control group(P<0.05).The pain score of the experimental group was lower than that of the control group(P<0.05).Conclusion:The application of modified non-traumatic filling technology in the treatment of pediatric dental caries showed good therapeutic outcomes.After the intervention,the child’s symptoms were significantly alleviated,the incidence of adverse events such as filling material falling off was reduced,their compliance was improved,and the pain was relieved.This procedure is worth to be promoted for clinical application.展开更多
Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.H...Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.展开更多
In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. ...In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. According to the previous practical experience, the feasibility of the implementation of raw gangue filling mining technology in the coal-pressed area was analyzed. Through the filling gangue compaction test, the deformation under different loading stages was obtained. Further, a reasonable prediction of the deformation beyond the experimental limited loading load was made based on the experimental results. Through the deformation source analysis of the whole process of gangue filling, the key factors for controlling deformation before, during, and after filling were determined. Additionally, the proportion of deformation during different stages was quantified. Considering the protection of surface buildings, mining fullness of the working face and mining technology, the production parameters of 1209 and 1210 filling working faces were preliminarily determined. Through numerical simulation, the rationality of mining scheme was verified. Based on the practice of 1209 working face and the key factors to control the deformation of gangue filling, the mining system and process in 1210 working face were optimized. According to the measured surface rock movement, raw gangue filling mining technology can meet the requirements of surface building protection level. Especially, this paper provides a method to quantitatively calculate the equivalent mining height (EMH) of raw gangue filling and its mining deformation, which has reference significance for old mining areas.展开更多
Grain filling influences grain size and quality in cereal crops. The molecular mechanisms that regulate grain endosperm development remain elusive. In this study, we characterized a filling-defective and grain width m...Grain filling influences grain size and quality in cereal crops. The molecular mechanisms that regulate grain endosperm development remain elusive. In this study, we characterized a filling-defective and grain width mutant, fgw1, whose mutation increased rice seed width mainly via cell division and expansion in grains. Sucrose contents were higher but starch contents lower in the fgw1 mutant during the grainfilling stage, resulting in inferior endosperm of opaque, white appearance with loosely packed starch granules. Map-based cloning revealed that FGW1 encoded a protein containing DUF630/DUF632domains, localized in the plasma membrane with preferential expression in the panicle. RNA interference in FGW1 resulted in increased grain width and weight, whereas overexpression of FGW1 led to slightly narrower kernels and better grain filling. In a yeast two-hybrid assay, FGW1 interacted directly with the 14–3–3 protein GF14f, bimolecular fluorescence complementation verified that the site of interaction was the membrane, and the mutated FGW1 protein failed to interact with GF14f. The expression of GF14f was down-regulated in fgw1, and the activities of AGPase, StSase, and SuSase in the endosperm of fgw1increased similarly to those of a reported GF14f-RNAi. Transcriptome analysis indicated that FGW1 also regulates cellular processes and carbohydrate metabolism. Thus, FGW1 regulated grain formation via the GF14f pathway.展开更多
Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated....Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.展开更多
As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to h...As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified.展开更多
In this study, a new method based on image processing was presented to count and discriminate paddy rice, even when they overlapped. This method was performed in three steps. In the first step, using a reference image...In this study, a new method based on image processing was presented to count and discriminate paddy rice, even when they overlapped. This method was performed in three steps. In the first step, using a reference image that excludes any overlapping paddy rice, the average area, standard deviation, and a threshold value for paddy rice were determined.展开更多
In an experiment performed on the Shenguang-III prototype laser facility, collective Thomson scattering (TS) is used to study the spatialgrowth of stimulated Brillouin scattering (SBS) in a gas-filled hohlraum by dete...In an experiment performed on the Shenguang-III prototype laser facility, collective Thomson scattering (TS) is used to study the spatialgrowth of stimulated Brillouin scattering (SBS) in a gas-filled hohlraum by detecting the SBS-driven ion acoustic wave. High-quality timeresolved SBS and TS spectra are obtained simultaneously in the experiment, and these are analyzed by a steady-state code based on theray-tracing model. The analysis indicates that ion–ion collisions may play an important role in suppressing SBS growth in the Au plasma;as aresult, the SBS excited in the filled gas region is dominant. In the early phase of the laser pulse, SBS originates primarily from the high-densityplasma at the edges of the interaction beam channel, which is piled up by the heating of the interaction beam. Throughout the duration of thelaser pulse, the presence of the TS probe beam might mitigate SBS by perturbing the density distribution around the region overlapping withthe interaction beam.展开更多
The annual Two Sessions highlight high-quality development The 14th National People’s Congress (NPC),China’s national legislature, concluded its first session on the morning of 13 March in Beijing,marking the comple...The annual Two Sessions highlight high-quality development The 14th National People’s Congress (NPC),China’s national legislature, concluded its first session on the morning of 13 March in Beijing,marking the completion of the annual sessions of the NPC and the National Committee of the Chinese People’s Political Consultative Conference (CPPCC), the top political advisory body,known collectively as Two Sessions.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made us...[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.展开更多
A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Sto...A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.展开更多
The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results ...The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results showed that, except for brown rice rate, almost all parameters for yield and grain quality including ratio of grain length to grain width, gelatinization temperature and gel consistency, were significantly influenced by lodging and thus deteriorated. Regression analysis suggested that, lodging one day earlier at the grain-filling stage could cause 2.66% to 2.71% of yield loss, 1.8 to 2.6 percentage points decrease of seed-setting rate, 0.26 to 0.32 g reduction of lO00-grain weight, 0.097 to 0. 155 percentage point decline of milled rice rate, as well as 0.13 to 0.27 percentage point increase of chalky grain rate, and 0.021 to 0.024 percentage point rise of protein content, and subsequently lower the eating quality.展开更多
In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimen...In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimental results indicate that influences of the dynamic factors on flow morphology can be expressed quantitatively with the parameterφ(k). The flow field takes on different morphology with change in values of φ(k). For thick and thin walled castings, the main dynamic factors influencing flow morphology are gravity and surface tension respectively. Under general circumstances, F_r and W_e should be equal in their values to guarantee the similarity between the prototype and the model in simulating mold filling under counter gravity by experiment.展开更多
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
文摘Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.
基金supported by the National Key Research and Development Program of China(2017YFD0300202-2)the National Natural Science Foundation of China(31871567)the Young Scholar of Tang(2017)。
文摘In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
文摘Objective:To analyze the effectiveness of modified non-traumatic filling technology in the treatment of pediatric dental caries.Methods:Ninety-seven children with dental caries who were treated in our hospital(Panyu Maternal and Child Care Service Center of Guangzhou)from January 2022 to December 2023 were selected and randomly divided into two groups,with 48 cases in the experimental group and 49 in the control group.The experimental group was treated with modified non-traumatic filling techniques,while the control group was treated with conventional filling techniques.Observation indicators such as the total effectiveness of the treatment,incidence of adverse events,treatment compliance,and pain scores were analyzed after the intervention.Result:After intervention,the total effectiveness of the treatment in the experimental group was higher than that in the control group(P<0.05).The incidence of adverse events in the experimental group was lower than that of the control group(P<0.05).The treatment compliance of patients in the experimental group was higher than that in the control group(P<0.05).The pain score of the experimental group was lower than that of the control group(P<0.05).Conclusion:The application of modified non-traumatic filling technology in the treatment of pediatric dental caries showed good therapeutic outcomes.After the intervention,the child’s symptoms were significantly alleviated,the incidence of adverse events such as filling material falling off was reduced,their compliance was improved,and the pain was relieved.This procedure is worth to be promoted for clinical application.
基金financially sponsored by the National Natural Science Foundation of China(Grant Nos.22075223,22179104)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2022-ZD-4)。
文摘Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
文摘In order to recover the strip pillar coal resources, reduce the amount of gangue mountain and realize remediation of the goaf environment in the old mining area, the raw gangue filling mining technology was proposed. According to the previous practical experience, the feasibility of the implementation of raw gangue filling mining technology in the coal-pressed area was analyzed. Through the filling gangue compaction test, the deformation under different loading stages was obtained. Further, a reasonable prediction of the deformation beyond the experimental limited loading load was made based on the experimental results. Through the deformation source analysis of the whole process of gangue filling, the key factors for controlling deformation before, during, and after filling were determined. Additionally, the proportion of deformation during different stages was quantified. Considering the protection of surface buildings, mining fullness of the working face and mining technology, the production parameters of 1209 and 1210 filling working faces were preliminarily determined. Through numerical simulation, the rationality of mining scheme was verified. Based on the practice of 1209 working face and the key factors to control the deformation of gangue filling, the mining system and process in 1210 working face were optimized. According to the measured surface rock movement, raw gangue filling mining technology can meet the requirements of surface building protection level. Especially, this paper provides a method to quantitatively calculate the equivalent mining height (EMH) of raw gangue filling and its mining deformation, which has reference significance for old mining areas.
基金sponsored by the National Key Research and Development Program of China(2022YFD1201600, 2016YFD0100501)Natural Science Foundation of Chongqing of China (cstc2020jcyj-msxm0539)+1 种基金the National Natural Science Foundation of China (32171964)Chongqing Natural Science Foundation Innovation Group (cstc2021jcyjcxttX0004)。
文摘Grain filling influences grain size and quality in cereal crops. The molecular mechanisms that regulate grain endosperm development remain elusive. In this study, we characterized a filling-defective and grain width mutant, fgw1, whose mutation increased rice seed width mainly via cell division and expansion in grains. Sucrose contents were higher but starch contents lower in the fgw1 mutant during the grainfilling stage, resulting in inferior endosperm of opaque, white appearance with loosely packed starch granules. Map-based cloning revealed that FGW1 encoded a protein containing DUF630/DUF632domains, localized in the plasma membrane with preferential expression in the panicle. RNA interference in FGW1 resulted in increased grain width and weight, whereas overexpression of FGW1 led to slightly narrower kernels and better grain filling. In a yeast two-hybrid assay, FGW1 interacted directly with the 14–3–3 protein GF14f, bimolecular fluorescence complementation verified that the site of interaction was the membrane, and the mutated FGW1 protein failed to interact with GF14f. The expression of GF14f was down-regulated in fgw1, and the activities of AGPase, StSase, and SuSase in the endosperm of fgw1increased similarly to those of a reported GF14f-RNAi. Transcriptome analysis indicated that FGW1 also regulates cellular processes and carbohydrate metabolism. Thus, FGW1 regulated grain formation via the GF14f pathway.
基金This work was funded by the National Natural Science Foundation of China(Nos.52075198,52271102 and 52205359)the China Postdoctoral Science Foundation(No.2021M691112).
文摘Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.
基金funded by the Natural Science Foundation of Zhejiang Province(LY20C130006)the National Natural Science Foundation of China(32172018)the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products(2010DS700124-ZZ1805).
文摘As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified.
基金funded by the Research Deputy of Sari Agricultural Sciences and Natural Resources University, Iran (Grant No.01-1396-02)。
文摘In this study, a new method based on image processing was presented to count and discriminate paddy rice, even when they overlapped. This method was performed in three steps. In the first step, using a reference image that excludes any overlapping paddy rice, the average area, standard deviation, and a threshold value for paddy rice were determined.
基金supported by the Natural Science Foundation of China(Grant Nos.11905204,11975215,12105270,12205272,12205274,12275032,12275251,and 12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘In an experiment performed on the Shenguang-III prototype laser facility, collective Thomson scattering (TS) is used to study the spatialgrowth of stimulated Brillouin scattering (SBS) in a gas-filled hohlraum by detecting the SBS-driven ion acoustic wave. High-quality timeresolved SBS and TS spectra are obtained simultaneously in the experiment, and these are analyzed by a steady-state code based on theray-tracing model. The analysis indicates that ion–ion collisions may play an important role in suppressing SBS growth in the Au plasma;as aresult, the SBS excited in the filled gas region is dominant. In the early phase of the laser pulse, SBS originates primarily from the high-densityplasma at the edges of the interaction beam channel, which is piled up by the heating of the interaction beam. Throughout the duration of thelaser pulse, the presence of the TS probe beam might mitigate SBS by perturbing the density distribution around the region overlapping withthe interaction beam.
文摘The annual Two Sessions highlight high-quality development The 14th National People’s Congress (NPC),China’s national legislature, concluded its first session on the morning of 13 March in Beijing,marking the completion of the annual sessions of the NPC and the National Committee of the Chinese People’s Political Consultative Conference (CPPCC), the top political advisory body,known collectively as Two Sessions.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Supported by Special Scientific Research Fund of Agricultural Public Welfare Profession(200903008-09)~~
文摘[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.
基金Projects(51304145,51301118,51304152)supported by the National Natural Science Foundation of ChinaProject(2013JQ7016)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(2013T002)supported by the Science Foundation of Taiyuan University of Technology,ChinaProject(2013JK0904)supported by Shannxi Provincial Education Department,China
文摘A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.
基金supported by the Independent Innovation Program of Agricultural Science and Technology in Jiangsu Province,China (Grant No.CX(10)226)
文摘The effects of lodging of rice plants from 20 d after full heading to maturity on yield and grain quality were investigated with a hybrid rice combination Liangyoupeijiu and a japonica rice cultivar CY-6. The results showed that, except for brown rice rate, almost all parameters for yield and grain quality including ratio of grain length to grain width, gelatinization temperature and gel consistency, were significantly influenced by lodging and thus deteriorated. Regression analysis suggested that, lodging one day earlier at the grain-filling stage could cause 2.66% to 2.71% of yield loss, 1.8 to 2.6 percentage points decrease of seed-setting rate, 0.26 to 0.32 g reduction of lO00-grain weight, 0.097 to 0. 155 percentage point decline of milled rice rate, as well as 0.13 to 0.27 percentage point increase of chalky grain rate, and 0.021 to 0.024 percentage point rise of protein content, and subsequently lower the eating quality.
文摘In situ observations of the flow morphology during mold filling under counter gravity are conducted on a perspex water model by means of flow visualization, high speed photography and pattern processing. The experimental results indicate that influences of the dynamic factors on flow morphology can be expressed quantitatively with the parameterφ(k). The flow field takes on different morphology with change in values of φ(k). For thick and thin walled castings, the main dynamic factors influencing flow morphology are gravity and surface tension respectively. Under general circumstances, F_r and W_e should be equal in their values to guarantee the similarity between the prototype and the model in simulating mold filling under counter gravity by experiment.