A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. P...A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.展开更多
A stable continuous wave mode-locked picosecond Ti:sapphire laser by using a fast semiconductor saturable absorber mirror (SESAM) is demonstrated. The laser delivers pulse width of 20 ps at a central wavelength of ...A stable continuous wave mode-locked picosecond Ti:sapphire laser by using a fast semiconductor saturable absorber mirror (SESAM) is demonstrated. The laser delivers pulse width of 20 ps at a central wavelength of 813 nm and a repetition rate of 100 MHz. The maximum output power is 1.34 W with pump power of 7 W which corresponds to an optical^optical conversion efficiency of 19.1%.展开更多
Groundwater lowering is one of the most important countermeasures to avoid the risk of rainfall-triggered landslides.However,the long-term reliability of many drainage methods is often a matter of concern since the dr...Groundwater lowering is one of the most important countermeasures to avoid the risk of rainfall-triggered landslides.However,the long-term reliability of many drainage methods is often a matter of concern since the drains may easily get clogged.A new hydraulic-driven self-starting drainage method is presented in this paper.In the proposed Random Forest(RF)based robust design approach for the selfstarting drains,the datasets are generated using an automatically controlled numerical modeling technology.The deterministic analysis is carried out based on uncertain soil parameters and the specific designs selected using Uniform Design(UD).The ensemble of RF models is applied in the design process to improve computing efficiency.Safety requirements,design robustness,and cost efficiency are simultaneously considered utilizing multiobjective optimization.A straightforward and efficient framework that focuses on difficulties caused by an enormous design space is established for the robust design of the self-starting drains,and improved computation efficiency is achieved.The effectiveness of the proposed approach is illustrated with a case study,the Qili landslide in Zhejiang Province,China.展开更多
The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the ...The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.展开更多
CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, ...CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm^2,and 5.9%, respectively.In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps.The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm.The maximum output power is 110 mW with slope efficiency of 7.1%.Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.展开更多
In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.Th...In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.The effect of the azimuthal angle of blade position relative to wind direction on the self-starting capability was discussed based on the results of flow visualization.The torque and centripetal force of the rotor when the self-starting behavior starts were roughly calculated with the flow visualization results of the rotor.It is suggested that there exists the condition of wind speed and configuration of the blade position of the rotor at the rest of rotor to the reach to situational rotation number.展开更多
Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide(MoS2)saturable absorber(SA) is demonstrated. The few-layer MoS2 is prepared by the chemical vapor deposition(CVD) me...Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide(MoS2)saturable absorber(SA) is demonstrated. The few-layer MoS2 is prepared by the chemical vapor deposition(CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible Mo S2SA. The 20 th harmonic modelocked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio(SMSR) of 36.1dB. The results confirm that few-layer MoS2 can serve as an effective SA for mode-locked fiber lasers.展开更多
Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The ...Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The central wavelengths of Q-switching,Q-switched mode-locking and mode-locking operation modes are 1569.7 nm,1570.9 nm,and 1572 nm,respectively.The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB.The results validate the capability of generating soliton pulse by doped fiber saturable absorber.Furthermore,the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.展开更多
The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dep...The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dependence of output field on modulation length and radio-frequency parameters is obtained.In order to achieve short pulse generation,the DC bias should close to threshold value and modulation length should be shorter than 0.256 mm.The output pulse is unstable and the envelope shows many oscillations in the presence of spatial hole burning,resulting destabilization of mode-locking.展开更多
This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By in...This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microf...Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.展开更多
We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our kno...We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.展开更多
A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introdu...A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. ...We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056展开更多
A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a...A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a total power of 4.8 W. An optical-optical efficiency is achieved to be 24% for a stable CW mode-locking operation at 1064 nm, with a pulse repetition rate of 70 MHz and pulse width of 16 ps. The multipulse in the pulse sequence is eliminated for reaching a peak power as high as 4 kW.展开更多
A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picose...A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picosecond pulse output with an average power of 1.38 W, a repetition rate of 3.24 GHz, and a pulse duration of 11.4 ps is achieved. After one stage of amplification, the final output power reaches 11.34 W, corresponding to a total optical-to-optical efficiency of about 32%. The root mean square(RMS) value of power fluctuation is demonstrated to be less than 0.6% in 24 hours,showing a superior stability with the compact configuration.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61205130)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K5051305008)
文摘A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60225005 and 60308001).
文摘A stable continuous wave mode-locked picosecond Ti:sapphire laser by using a fast semiconductor saturable absorber mirror (SESAM) is demonstrated. The laser delivers pulse width of 20 ps at a central wavelength of 813 nm and a repetition rate of 100 MHz. The maximum output power is 1.34 W with pump power of 7 W which corresponds to an optical^optical conversion efficiency of 19.1%.
基金supported by the National Natural Science Foundation of China(Grant No.41772276)the Key R&D project of Zhejiang Province(Grant No.2017C03006)the Zhejiang University and the Norwegian Geotechnical Institute for funding his research stay at NGI。
文摘Groundwater lowering is one of the most important countermeasures to avoid the risk of rainfall-triggered landslides.However,the long-term reliability of many drainage methods is often a matter of concern since the drains may easily get clogged.A new hydraulic-driven self-starting drainage method is presented in this paper.In the proposed Random Forest(RF)based robust design approach for the selfstarting drains,the datasets are generated using an automatically controlled numerical modeling technology.The deterministic analysis is carried out based on uncertain soil parameters and the specific designs selected using Uniform Design(UD).The ensemble of RF models is applied in the design process to improve computing efficiency.Safety requirements,design robustness,and cost efficiency are simultaneously considered utilizing multiobjective optimization.A straightforward and efficient framework that focuses on difficulties caused by an enormous design space is established for the robust design of the self-starting drains,and improved computation efficiency is achieved.The effectiveness of the proposed approach is illustrated with a case study,the Qili landslide in Zhejiang Province,China.
基金Projects(61105086,51505347)supported by the National Natural Science Foundation of China
文摘The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant Nos.51472162,51672177,and 61475171)the Talent Introduction Research Project of Shanghai Institute of Technology,China(Grant No.YJ 2018-8)
文摘CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm^2,and 5.9%, respectively.In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps.The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm.The maximum output power is 110 mW with slope efficiency of 7.1%.Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.
基金supported in part by International Platform for Dryland Research and Education (IPDRE),Tottori University
文摘In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.The effect of the azimuthal angle of blade position relative to wind direction on the self-starting capability was discussed based on the results of flow visualization.The torque and centripetal force of the rotor when the self-starting behavior starts were roughly calculated with the flow visualization results of the rotor.It is suggested that there exists the condition of wind speed and configuration of the blade position of the rotor at the rest of rotor to the reach to situational rotation number.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378028,61421002,61475030,and 61377042)the National Basic Research Program of China(Grant No.2012CB315701)the New Century Excellent Talents Program in University,China(Grant No.NCET-13-0092)
文摘Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide(MoS2)saturable absorber(SA) is demonstrated. The few-layer MoS2 is prepared by the chemical vapor deposition(CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible Mo S2SA. The 20 th harmonic modelocked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio(SMSR) of 36.1dB. The results confirm that few-layer MoS2 can serve as an effective SA for mode-locked fiber lasers.
基金supported by the Science and Technology Innovation Program of Hunan Province,China(Grant No.2021RC5012).
文摘Self-starting Q-switching,Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time.The central wavelengths of Q-switching,Q-switched mode-locking and mode-locking operation modes are 1569.7 nm,1570.9 nm,and 1572 nm,respectively.The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB.The results validate the capability of generating soliton pulse by doped fiber saturable absorber.Furthermore,the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFF0106302)the National Natural Science Foundation of China(Grant Nos.61975225 and 61927813)Shanghai International Cooperation Project,China(Grant No.18590780100).
文摘The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dependence of output field on modulation length and radio-frequency parameters is obtained.In order to achieve short pulse generation,the DC bias should close to threshold value and modulation length should be shorter than 0.256 mm.The output pulse is unstable and the envelope shows many oscillations in the presence of spatial hole burning,resulting destabilization of mode-locking.
文摘This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304409 and 61705028)the Natural Science Foundation of Chongqing City,China(Grant Nos.csct2013jcyjA4004 and cstc2017jcyjA0893)+1 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500422)the Postgraduate Research Innovation Foundation of Chongqing City,China(Grant No.CYS17240)
文摘Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61078032)the Science and Technology Funds on Solide-State Laser Laboratory of China (Grant No. 9140C0403011106)
文摘We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.
基金supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
基金Project supported by the National Major Scientific Instrument Development Project of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61205130)the Fundamental Research Funds for the Central Universities,China(Grant No.JB140502)
文摘We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056
基金Project supported by the State Key Laboratory of Tribology,Tsinghua University (Grant No. SKLT08A05)
文摘A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a total power of 4.8 W. An optical-optical efficiency is achieved to be 24% for a stable CW mode-locking operation at 1064 nm, with a pulse repetition rate of 70 MHz and pulse width of 16 ps. The multipulse in the pulse sequence is eliminated for reaching a peak power as high as 4 kW.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB16030200)the National Natural Science Foundation of China(Grant Nos.11774410 and 61575217)+1 种基金the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.KJZD-EW-L11-03)
文摘A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picosecond pulse output with an average power of 1.38 W, a repetition rate of 3.24 GHz, and a pulse duration of 11.4 ps is achieved. After one stage of amplification, the final output power reaches 11.34 W, corresponding to a total optical-to-optical efficiency of about 32%. The root mean square(RMS) value of power fluctuation is demonstrated to be less than 0.6% in 24 hours,showing a superior stability with the compact configuration.