The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were invest...The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.展开更多
Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case ...Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.展开更多
Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed ...Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation. For a better understanding of the load-deformation behavior of this type of dams during construction and impounding, numerical simulations were carried out. The interaction between the thin reinforced concrete core and the dam fill material as well as the influence of fill material properties and other main parameters, such as the roughness of the concrete surface and bedding conditions of the concrete core,on the deformation behavior of dams were examined. The results show that high compressive stress is mainly induced by arching effects in the dam body during construction. During the reservoir impounding, the compressive stresses in the core are reduced significantly while the bending moment in the core footing increases. The results also show that the maximum bending moments occur at the core footing and can be significantly reduced by design improvements. The findings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.展开更多
Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Du...Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.展开更多
Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expans...Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expansive mechanism of self-stressing concrete, the continuous observation of 47 days on six specimens was carried on. The specimens have different steel area to concrete area ratio. The expansive process in hoop and axial direction were studied, and the expansive mechanism was discussed too. The experimental results identify that the creep and elastic deformation take a large proportion in effective free expansion. The calculating formulas of self-stress in hoop and axial directions were presented here.展开更多
The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and t...The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and tends to be constant after 25 days regardless of the restraining conditions. The mixture ratio of expansive cement and restraining conditions are the main factors affecting expansive deformation. Self-stress can be obtained when the expansive deformation is restrained. The higher self-stress could be obtained when the expensive concrete is restrained by steel tube. For specimens under steel tube restraining, the wall thickness and the length of the steel tube have important influence on self-stress. Both the radial self-stress and axial self-stress in concrete core increase when wall thickness or length of the steel tube increases.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
文摘The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.
文摘Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.
文摘Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation. For a better understanding of the load-deformation behavior of this type of dams during construction and impounding, numerical simulations were carried out. The interaction between the thin reinforced concrete core and the dam fill material as well as the influence of fill material properties and other main parameters, such as the roughness of the concrete surface and bedding conditions of the concrete core,on the deformation behavior of dams were examined. The results show that high compressive stress is mainly induced by arching effects in the dam body during construction. During the reservoir impounding, the compressive stresses in the core are reduced significantly while the bending moment in the core footing increases. The results also show that the maximum bending moments occur at the core footing and can be significantly reduced by design improvements. The findings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.
文摘Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.
基金the National Natural Science Foundation of China (50578027)
文摘Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expansive mechanism of self-stressing concrete, the continuous observation of 47 days on six specimens was carried on. The specimens have different steel area to concrete area ratio. The expansive process in hoop and axial direction were studied, and the expansive mechanism was discussed too. The experimental results identify that the creep and elastic deformation take a large proportion in effective free expansion. The calculating formulas of self-stress in hoop and axial directions were presented here.
基金Funded by the NSFC (No.50578027)the Key Subject Foundation of Henan Province (No.504906)the Doctor Foundation of Henan Polytechnic University (No.B2009-2)
文摘The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and tends to be constant after 25 days regardless of the restraining conditions. The mixture ratio of expansive cement and restraining conditions are the main factors affecting expansive deformation. Self-stress can be obtained when the expansive deformation is restrained. The higher self-stress could be obtained when the expensive concrete is restrained by steel tube. For specimens under steel tube restraining, the wall thickness and the length of the steel tube have important influence on self-stress. Both the radial self-stress and axial self-stress in concrete core increase when wall thickness or length of the steel tube increases.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.