Dynamic structuring and functions of perisynaptic astrocytic processes and of the gap junction network within a single astrocyte are outlined. Motile perisynaptic astrocytic processes are generating microdomains. By c...Dynamic structuring and functions of perisynaptic astrocytic processes and of the gap junction network within a single astrocyte are outlined. Motile perisynaptic astrocytic processes are generating microdomains. By contacting and retracting of their endfeet an appropriate receptor pattern is selected that modulates the astrocytic receptor sheath for its activation by neurotransmitter substances, ions, transporters, etc. This synaptic information processing occurs in three distinct time scales of milliseconds to seconds, seconds to minutes, hours or longer. Simultaneously, the interconnecting gap junctions are activated by building a network within the astrocyte. Frequently activated gap junction cycles become embodied in gap junction plaques. The gap junction network formation and gap junction plaques are governed and controlled in the same time scales as synaptic information processing. Biomimetic computer systems may represent an alternative to limitations of brainphysiological research. The model proposed allows the interpretation of affective psychoses and schizophrenia as time disorders basically determined by a shortened, prolonged or lacking time scale of synaptic information processing.展开更多
The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimi...The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimize the microstructure of g-C_3N_4 and obtained graphene-like g-C_3N_4 nanosheets with porous structure.In contrast to traditional thermal pyrolysis preparation of g-C_3N_4,the present thermal condensation was improved via pyrolysis of thiourea in an alumina crucible without a cover,followed by secondary heat treatment.The popcorn-like formation and layer-by-layer thermal exfoliation of graphene-like porous g-C_3N_4 was proposed to explain the formation mechanism.The photocatalytic removal performance of both NO and NO_2 with the graphene-like porous g-C_3N_4 for was significantly enhanced by selfstructural modification.Trapping experiments and in-situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS) measurement were conducted to detect the active species during photocatalysis and the conversion pathway of g-C_3N_4 photocatalysis for NO_x purification was revealed.The photocatalytic activity of graphene-like porous g-C_3N_4 was highly enhanced due to the improved charge separation and increased oxidation capacity of the ·O_2^- radicals and holes.This work could not only provide a novel self-structural modification for design of highly efficient photocatalysts,but also offer new insights into the mechanistic understanding of g-C_3N_4 photocatalysis.展开更多
文摘Dynamic structuring and functions of perisynaptic astrocytic processes and of the gap junction network within a single astrocyte are outlined. Motile perisynaptic astrocytic processes are generating microdomains. By contacting and retracting of their endfeet an appropriate receptor pattern is selected that modulates the astrocytic receptor sheath for its activation by neurotransmitter substances, ions, transporters, etc. This synaptic information processing occurs in three distinct time scales of milliseconds to seconds, seconds to minutes, hours or longer. Simultaneously, the interconnecting gap junctions are activated by building a network within the astrocyte. Frequently activated gap junction cycles become embodied in gap junction plaques. The gap junction network formation and gap junction plaques are governed and controlled in the same time scales as synaptic information processing. Biomimetic computer systems may represent an alternative to limitations of brainphysiological research. The model proposed allows the interpretation of affective psychoses and schizophrenia as time disorders basically determined by a shortened, prolonged or lacking time scale of synaptic information processing.
基金supported by the National Natural Science Foundation of China(51478070,21501016 and 21777011)the National Key R&D Program of China(2016YFC0204702)+3 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2016jcyj A0481,cstc2017jcyj BX0052)the Early Career Scheme(ECS 809813) from Hong Kongthe Internal Research Grant from Hong Kong Institute of Education(R3588)
文摘The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimize the microstructure of g-C_3N_4 and obtained graphene-like g-C_3N_4 nanosheets with porous structure.In contrast to traditional thermal pyrolysis preparation of g-C_3N_4,the present thermal condensation was improved via pyrolysis of thiourea in an alumina crucible without a cover,followed by secondary heat treatment.The popcorn-like formation and layer-by-layer thermal exfoliation of graphene-like porous g-C_3N_4 was proposed to explain the formation mechanism.The photocatalytic removal performance of both NO and NO_2 with the graphene-like porous g-C_3N_4 for was significantly enhanced by selfstructural modification.Trapping experiments and in-situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS) measurement were conducted to detect the active species during photocatalysis and the conversion pathway of g-C_3N_4 photocatalysis for NO_x purification was revealed.The photocatalytic activity of graphene-like porous g-C_3N_4 was highly enhanced due to the improved charge separation and increased oxidation capacity of the ·O_2^- radicals and holes.This work could not only provide a novel self-structural modification for design of highly efficient photocatalysts,but also offer new insights into the mechanistic understanding of g-C_3N_4 photocatalysis.