Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
Although modulation classification based on deep neural network can achieve high Modulation Classification(MC)accuracies,catastrophic forgetting will occur when the neural network model continues to learn new tasks.In...Although modulation classification based on deep neural network can achieve high Modulation Classification(MC)accuracies,catastrophic forgetting will occur when the neural network model continues to learn new tasks.In this paper,we simulate the dynamic wireless communication environment and focus on breaking the learning paradigm of isolated automatic MC.We innovate a research algorithm for continuous automatic MC.Firstly,a memory for storing representative old task modulation signals is built,which is employed to limit the gradient update direction of new tasks in the continuous learning stage to ensure that the loss of old tasks is also in a downward trend.Secondly,in order to better simulate the dynamic wireless communication environment,we employ the mini-batch gradient algorithm which is more suitable for continuous learning.Finally,the signal in the memory can be replayed to further strengthen the characteristics of the old task signal in the model.Simulation results verify the effectiveness of the method.展开更多
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to ac...State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.展开更多
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ...Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.展开更多
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap...Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.展开更多
Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to ...Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to catastrophic forgetting of old tasks.In this paper,we propose a sample memory and recall framework for incremental learning of radio modulation classification.For data with different signal-to-noise ratios,we use a partial memory strategy by selecting appropriate samples for memorizing.We compare the performance of our proposed method with three baselines through a large number of simulation experiments.Results show that our method achieves far higher classification accuracy than finetuning method and feature extraction method.Furthermore,it performs closely to joint training method which uses all old data in terms of classification accuracy which validates the effectiveness of our method against catastrophic forgetting.展开更多
In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)syst...In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.展开更多
Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was h...Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was hence felt to introduce a new learning resource to supplement traditional teaching-learning methods. Methods: Digital, case based self–study modules were prepared using all open source technology and validated by experts in the specialty. The modules were uploaded on a website specifically created for the purpose. They were pilot tested on twenty consenting third year undergraduate (MBBS) students using a crossover design. Post test comprising of multiple choice questions was administered to the students after a period of two weeks. Feedback was obtained from faculty and students. Results: Test scores were found to be significantly higher amongst students who used the learning modules as a supplement to regular bedside teaching (p < 0.001;Wilcoxon signed rank test). Majority of students agreed that the modules helped them gain confidence during internal assessment examinations and would help revision. Conclusions: Online, case based, self-study modules helped students to perform better when used as a supplement to traditional teaching methods. Students agreed that it enabled easy understanding of subject and helped them gain confidence.展开更多
In recent years,self-supervised learning which does not require a large number of manual labels generate supervised signals through the data itself to attain the characterization learning of samples.Self-supervised le...In recent years,self-supervised learning which does not require a large number of manual labels generate supervised signals through the data itself to attain the characterization learning of samples.Self-supervised learning solves the problem of learning semantic features from unlabeled data,and realizes pre-training of models in large data sets.Its significant advantages have been extensively studied by scholars in recent years.There are usually three types of self-supervised learning:"Generative,Contrastive,and GeneTative-Contrastive."The model of the comparative learning method is relatively simple,and the performance of the current downstream task is comparable to that of the supervised learning method.Therefore,we propose a conceptual analysis framework:data augmentation pipeline,architectures,pretext tasks,comparison methods,semisupervised fine-tuning.Based on this conceptual framework,we qualitatively analyze the existing comparative self-supervised learning methods for computer vision,and then further analyze its performance at different stages,and finally summarize the research status of sei supervised comparative learning methods in other fields.展开更多
Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can ...Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals...Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals.This could be a critical problem in the broadband maritime wireless communications,where various propagation paths with large differences in the time of arrival are very likely to exist.Specifically,multiple paths may stem from the direct path,the reflection paths from the rough sea surface,and the refraction paths from the atmospheric duct,respectively.To address this issue,we propose a novel blind equalization-aided deep learning(DL)approach to recognize QAM signals in the presence of multipath propagation.The proposed approach consists of two modules:A blind equalization module and a subsequent DL network which employs the structure of ResNet.With predefined searching step-sizes for the blind equalization algorithm,which are designed according to the set of modulation formats of interest,the DL network is trained and tested over various multipath channel parameter settings.It is shown that as compared to the conventional DL approaches without equalization,the proposed method can achieve an improvement in the recognition accuracy up to 30%in severe multipath scenarios,especially in the high SNR regime.Moreover,it efficiently reduces the number of training data that is required.展开更多
Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classif...Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.展开更多
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat...Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method.展开更多
In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic s...In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic situation data.The classification of the road surface type,also known as the RST,is among the most essential of these situational data and can be utilized across the entirety of the ITS domain.Recently,the benefits of deep learning(DL)approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods.The ability to extract important features is vital in making RST classification more accurate.This work investigates the most recent advances in DL algorithms for sensor-based RST classification and explores appropriate feature extraction models.We used different convolutional neural networks to understand the functional architecture better;we constructed an enhanced DL model called SE-ResNet,which uses residual connections and squeeze-and-excitation mod-ules to improve the classification performance.Comparative experiments with a publicly available benchmark dataset,the passive vehicular sensors dataset,have shown that SE-ResNet outperforms other state-of-the-art models.The proposed model achieved the highest accuracy of 98.41%and the highest F1-score of 98.19%when classifying surfaces into segments of dirt,cobblestone,or asphalt roads.Moreover,the proposed model significantly outperforms DL networks(CNN,LSTM,and CNN-LSTM).The proposed RE-ResNet achieved the classification accuracies of asphalt roads at 98.98,cobblestone roads at 97.02,and dirt roads at 99.56%,respectively.展开更多
Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this art...Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this article, we propose a simplified inception module based Hadamard attention (SI + HA) mechanism for medical image classification. Specifically, we propose a new attention mechanism: Hadamard attention mechanism. It improves the accuracy of medical image classification without greatly increasing the complexity of the model. Meanwhile, we adopt a simplified inception module to improve the utilization of parameters. We use two medical image datasets to prove the superiority of our proposed method. In the BreakHis dataset, the AUCs of our method can reach 98.74%, 98.38%, 98.61% and 97.67% under the magnification factors of 40×, 100×, 200× and 400×, respectively. The accuracies can reach 95.67%, 94.17%, 94.53% and 94.12% under the magnification factors of 40×, 100×, 200× and 400×, respectively. In the KIMIA Path 960 dataset, the AUCs and accuracy of our method can reach 99.91% and 99.03%. It is superior to the currently popular methods and can significantly improve the effectiveness of medical image classification.展开更多
Audio mixing is a crucial part of music production.For analyzing or recreating audio mixing,it is of great importance to conduct research on estimating mixing parameters used to create mixdowns from music recordings,i...Audio mixing is a crucial part of music production.For analyzing or recreating audio mixing,it is of great importance to conduct research on estimating mixing parameters used to create mixdowns from music recordings,i.e.,audio mixing inversion.However,approaches of audio mixing inversion are rarely explored.A method of estimating mixing parameters from raw tracks and a stereo mixdown via embodied self-supervised learning is presented.In this work,several commonly used audio effects including gain,pan,equalization,reverb,and compression,are taken into consideration.This method is able to learn an inference neural network that takes a stereo mixdown and the raw audio sources as input and estimate mixing parameters used to create the mixdown by iteratively sampling and training.During the sampling step,the inference network predicts a set of mixing parameters,which is sampled and fed to an audio-processing framework to generate audio data for the training step.During the training step,the same network used in the sampling step is optimized with the sampled data generated from the sampling step.This method is able to explicitly model the mixing process in an interpretable way instead of using a black-box neural network model.A set of objective measures are used for evaluation.The experimental results show that this method has better performance than current state-of-the-art methods.展开更多
The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting...The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically.展开更多
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
文摘Although modulation classification based on deep neural network can achieve high Modulation Classification(MC)accuracies,catastrophic forgetting will occur when the neural network model continues to learn new tasks.In this paper,we simulate the dynamic wireless communication environment and focus on breaking the learning paradigm of isolated automatic MC.We innovate a research algorithm for continuous automatic MC.Firstly,a memory for storing representative old task modulation signals is built,which is employed to limit the gradient update direction of new tasks in the continuous learning stage to ensure that the loss of old tasks is also in a downward trend.Secondly,in order to better simulate the dynamic wireless communication environment,we employ the mini-batch gradient algorithm which is more suitable for continuous learning.Finally,the signal in the memory can be replayed to further strengthen the characteristics of the old task signal in the model.Simulation results verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金funded by the “SMART BATTERY” project, granted by Villum Foundation in 2021 (project number 222860)。
文摘State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.
文摘Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.
文摘Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to catastrophic forgetting of old tasks.In this paper,we propose a sample memory and recall framework for incremental learning of radio modulation classification.For data with different signal-to-noise ratios,we use a partial memory strategy by selecting appropriate samples for memorizing.We compare the performance of our proposed method with three baselines through a large number of simulation experiments.Results show that our method achieves far higher classification accuracy than finetuning method and feature extraction method.Furthermore,it performs closely to joint training method which uses all old data in terms of classification accuracy which validates the effectiveness of our method against catastrophic forgetting.
基金supported by the National Natural Science Foundation of China under Grant U19B2014the Sichuan Science and Technology Program under Grant 2023NSFSC0457the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.
文摘In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.
文摘Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was hence felt to introduce a new learning resource to supplement traditional teaching-learning methods. Methods: Digital, case based self–study modules were prepared using all open source technology and validated by experts in the specialty. The modules were uploaded on a website specifically created for the purpose. They were pilot tested on twenty consenting third year undergraduate (MBBS) students using a crossover design. Post test comprising of multiple choice questions was administered to the students after a period of two weeks. Feedback was obtained from faculty and students. Results: Test scores were found to be significantly higher amongst students who used the learning modules as a supplement to regular bedside teaching (p < 0.001;Wilcoxon signed rank test). Majority of students agreed that the modules helped them gain confidence during internal assessment examinations and would help revision. Conclusions: Online, case based, self-study modules helped students to perform better when used as a supplement to traditional teaching methods. Students agreed that it enabled easy understanding of subject and helped them gain confidence.
文摘In recent years,self-supervised learning which does not require a large number of manual labels generate supervised signals through the data itself to attain the characterization learning of samples.Self-supervised learning solves the problem of learning semantic features from unlabeled data,and realizes pre-training of models in large data sets.Its significant advantages have been extensively studied by scholars in recent years.There are usually three types of self-supervised learning:"Generative,Contrastive,and GeneTative-Contrastive."The model of the comparative learning method is relatively simple,and the performance of the current downstream task is comparable to that of the supervised learning method.Therefore,we propose a conceptual analysis framework:data augmentation pipeline,architectures,pretext tasks,comparison methods,semisupervised fine-tuning.Based on this conceptual framework,we qualitatively analyze the existing comparative self-supervised learning methods for computer vision,and then further analyze its performance at different stages,and finally summarize the research status of sei supervised comparative learning methods in other fields.
基金This work was funded by the Deanship of Scientific Research at Jouf University under grant No(DSR-2021-02-0379).
文摘Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
基金the National Natural Science Foundation of China under Grant 61771264,61801114,61501264,61771286the Nantong University-Nantong Joint Research Center for Intelligent Information Technology under Grant No.KFKT2017B01,KFKT2017A04the Natural Science Foundation of Jiangsu Province under Grant BK20170688.
文摘Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals.This could be a critical problem in the broadband maritime wireless communications,where various propagation paths with large differences in the time of arrival are very likely to exist.Specifically,multiple paths may stem from the direct path,the reflection paths from the rough sea surface,and the refraction paths from the atmospheric duct,respectively.To address this issue,we propose a novel blind equalization-aided deep learning(DL)approach to recognize QAM signals in the presence of multipath propagation.The proposed approach consists of two modules:A blind equalization module and a subsequent DL network which employs the structure of ResNet.With predefined searching step-sizes for the blind equalization algorithm,which are designed according to the set of modulation formats of interest,the DL network is trained and tested over various multipath channel parameter settings.It is shown that as compared to the conventional DL approaches without equalization,the proposed method can achieve an improvement in the recognition accuracy up to 30%in severe multipath scenarios,especially in the high SNR regime.Moreover,it efficiently reduces the number of training data that is required.
基金supported in part by the National Natural Science Foundation of China with grants 61525101,91746301,61631003,61601055the Shenzhen Fundamental Research Fund with grant KQTD2015033114415450
文摘Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.
基金Supported by National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2021A1515010661)Guangdong Provincial Special Projects in Key Fields of Colleges and Universities of China(Grant No.2020ZDZX2005).
文摘Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method.
基金funded by National Research Council of Thailand (NRCT):An Integrated Road Safety Innovations of Pedestrian Crossing for Mortality and Injuries Reduction Among All Groups of Road Users,Contract No.N33A650757supported by the Thailand Science Research and Innovation Fund+1 种基金the University of Phayao (Grant No.FF66-UoE001)King Mongkut’s University of Technology North Bangkok underContract No.KMUTNB-66-KNOW-05.
文摘In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic situation data.The classification of the road surface type,also known as the RST,is among the most essential of these situational data and can be utilized across the entirety of the ITS domain.Recently,the benefits of deep learning(DL)approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods.The ability to extract important features is vital in making RST classification more accurate.This work investigates the most recent advances in DL algorithms for sensor-based RST classification and explores appropriate feature extraction models.We used different convolutional neural networks to understand the functional architecture better;we constructed an enhanced DL model called SE-ResNet,which uses residual connections and squeeze-and-excitation mod-ules to improve the classification performance.Comparative experiments with a publicly available benchmark dataset,the passive vehicular sensors dataset,have shown that SE-ResNet outperforms other state-of-the-art models.The proposed model achieved the highest accuracy of 98.41%and the highest F1-score of 98.19%when classifying surfaces into segments of dirt,cobblestone,or asphalt roads.Moreover,the proposed model significantly outperforms DL networks(CNN,LSTM,and CNN-LSTM).The proposed RE-ResNet achieved the classification accuracies of asphalt roads at 98.98,cobblestone roads at 97.02,and dirt roads at 99.56%,respectively.
文摘Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this article, we propose a simplified inception module based Hadamard attention (SI + HA) mechanism for medical image classification. Specifically, we propose a new attention mechanism: Hadamard attention mechanism. It improves the accuracy of medical image classification without greatly increasing the complexity of the model. Meanwhile, we adopt a simplified inception module to improve the utilization of parameters. We use two medical image datasets to prove the superiority of our proposed method. In the BreakHis dataset, the AUCs of our method can reach 98.74%, 98.38%, 98.61% and 97.67% under the magnification factors of 40×, 100×, 200× and 400×, respectively. The accuracies can reach 95.67%, 94.17%, 94.53% and 94.12% under the magnification factors of 40×, 100×, 200× and 400×, respectively. In the KIMIA Path 960 dataset, the AUCs and accuracy of our method can reach 99.91% and 99.03%. It is superior to the currently popular methods and can significantly improve the effectiveness of medical image classification.
基金This work was supported by High-grade,Precision and Advanced Discipline Construction Project of Beijing Universities,Major Projects of National Social Science Fund of China(No.21ZD19)Nation Culture and Tourism Technological Innovation Engineering Project of China.
文摘Audio mixing is a crucial part of music production.For analyzing or recreating audio mixing,it is of great importance to conduct research on estimating mixing parameters used to create mixdowns from music recordings,i.e.,audio mixing inversion.However,approaches of audio mixing inversion are rarely explored.A method of estimating mixing parameters from raw tracks and a stereo mixdown via embodied self-supervised learning is presented.In this work,several commonly used audio effects including gain,pan,equalization,reverb,and compression,are taken into consideration.This method is able to learn an inference neural network that takes a stereo mixdown and the raw audio sources as input and estimate mixing parameters used to create the mixdown by iteratively sampling and training.During the sampling step,the inference network predicts a set of mixing parameters,which is sampled and fed to an audio-processing framework to generate audio data for the training step.During the training step,the same network used in the sampling step is optimized with the sampled data generated from the sampling step.This method is able to explicitly model the mixing process in an interpretable way instead of using a black-box neural network model.A set of objective measures are used for evaluation.The experimental results show that this method has better performance than current state-of-the-art methods.
文摘The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically.