The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as...The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB.展开更多
Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by re-newable energy.Herein,a novel self-supporting hierarchically porous Ni_(x)Fe-S/NiF...Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by re-newable energy.Herein,a novel self-supporting hierarchically porous Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure as bifunctional electrocatalyst was constructed based on porous Ni-Fe electrodeposition on three-dimensional(3D)carbon fiber cloth,in situ oxidation,and chemical sulfuration.Results showed that the Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure with a large specific surface area exhibits good bifunctional activity and stability for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)because of the abundance of active sites,synergistic effect of the heterostructure,superhydrophilic surface,and stable,self-supporting structure.The results further confirmed that the Ni_(x)Fe-S phase in the heterostructure is transformed into metal oxides/hydroxides and Ni_(3)S_(2) during OER.Compared with the commercial 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer,the self-supporting Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) electrolyzer exhibits better stability and lower cell voltage in the fluctu-ating current density range of 10-500 mA/cm^(2).Particularly,the cell voltage of Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) is only approximately 3.91 V at an industrial current density of 500 mA/cm^(2),which is lower than that of the 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer(i.e.,approximately 4.79 V).This work provides a promising strategy to develop excellent bifunctional electrocatalysts for fluctuating overall water splitting.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
The integration of topology optimization(TO)and additive manufacturing(AM)technologies can create significant synergy benefits,while the lack of AM-friendly TO algorithms is a serious bottleneck for the application of...The integration of topology optimization(TO)and additive manufacturing(AM)technologies can create significant synergy benefits,while the lack of AM-friendly TO algorithms is a serious bottleneck for the application of TO in AM.In this paper,a TO method is proposed to design self-supporting structures with an explicit continuous self-supporting constraint,which can be adaptively activated and tightened during the optimization procedure.The TO procedure is suitable for various critical overhang angles(COA),which is integrated with build direction assignment to reduce performance loss.Besides,a triangular directional self-supporting constraint sensitivity filter is devised to promote the downward evolution of structures and maintain stability.Two numerical examples are presented;all the test cases have successfully converged and the optimized solutions demonstrate good manufacturability.In the meanwhile,a fully self-supporting design can be obtained with a slight cost in performance through combination with build direction assignment.展开更多
A self-supporting T-shaped gate(SST-gate) GaN device and process method using electron beam lithography are proposed.An AlGaN/GaN high-electron-mobility transistor(HEMT) device with a gate length of 100 nm is fabricat...A self-supporting T-shaped gate(SST-gate) GaN device and process method using electron beam lithography are proposed.An AlGaN/GaN high-electron-mobility transistor(HEMT) device with a gate length of 100 nm is fabricated by this method.The current gain cutoff frequency(f_(T)) is 60 GHz,and the maximum oscillation frequency(f_(max)) is 104 GHz.The current collapse has improved by 13% at static bias of(V_(GSQ),V_(DSQ))=(-8 V,10 V),and gate manufacturing yield has improved by 17% compared with the traditional floating T-shaped gate(FT-gate) device.展开更多
Metal sulfides with high theoretical capacities are expected as promising cathode materials of Al batteries(AIBs). However, powdery active materials are mainly synthesized and loaded on current collector by insulating...Metal sulfides with high theoretical capacities are expected as promising cathode materials of Al batteries(AIBs). However, powdery active materials are mainly synthesized and loaded on current collector by insulating binder without capacity. Meanwhile, S as inert element in metal sulfides can not usually provide capacity. So, powdery metal sulfides only exhibit limiting practical capacity and poor cycling stability due to weak conductivity and low mass utilization. Herein, the novel self-supporting and dual-active Co-S nanosheets on carbon cloth (i.e. Co-S/CC) with hierarchically porous structure are constructed as cathode of AIBs. Co-S nanosheets are derived from ZIF-67 nanosheets on CC by a facile ligand replacement reaction. As a result, the binder-free Co-S/CC cathode with good conductivity delivers excellent initial discharge capacity of 383.4 m Ah g^(-1)(0.211 m Ah cm^(-2)) at current density of 200 m A g^(-1)and maintain reversible capacity of 156.9 m Ah g^(-1)(0.086 m Ah cm^(-2)) with Coulombic efficiency of 95.8% after 500 cycles,which are much higher than those of the traditional slurry-coating cathodes. Both Co and S as active elements in Co-S/CC contribute to capacity, which leads to a high mass utilization. This work provides a significant strategy for the construction of self-supporting metallic cathode for advanced high-energy density Al battery.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Synthesis of zeolite LTN (“Linde Type N”) was investigated under insertion of a SiO2-rich filtration residue (FR) from waste water cleaning of the silane production. A new synthesis procedure was therefore developed...Synthesis of zeolite LTN (“Linde Type N”) was investigated under insertion of a SiO2-rich filtration residue (FR) from waste water cleaning of the silane production. A new synthesis procedure was therefore developed applying a flotation mechanism with the aim to grow LTN in form of thin membrane like sheets. Preparation starts with preactivation of FR by slurrying first in alkaline solution, followed by an addition of aluminate solution and citric acid. The latter was added as suitable chelating agent for the initiation of the flotation process. In the course of these experiments, we succeeded in synthesizing zeo-lite LTN with more or less zeolite SOD as byproduct in the form of a stable compact membrane-like layer at low temperature of 60℃. The crystallization was performed under isotherm static conditions in an open reaction system without addition of organic templates as structure directing agents (OSDA’s). FR was utilized as a total substitute of sodium silicate in all experiments and an expansive pre-treatment procedure like calcinations was not needed. Furthermore, membrane formation with LTN of usual synthesis needs chemically functionalized supports. In contrast self-supporting membranous LTN layers were grown for the first time in the present study.展开更多
Taking B2C E-commerce enterprises as the center, it can be divided into a set of logistics activities upstream supply chain logistics producer to B2C e-commerce enterprises, and the B2C e-commerce enterprise logistics...Taking B2C E-commerce enterprises as the center, it can be divided into a set of logistics activities upstream supply chain logistics producer to B2C e-commerce enterprises, and the B2C e-commerce enterprise logistics to client consumer, and the paper focuses on the study of self-supporting logistics for the E-commerce enterprise. According to the development status of current B2C electronic commerce enterprise in our country and logistics, the paper study B2C electric business enterprise how to correctly choose the logistics mode and how to promote the business logistics operation level.展开更多
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i...Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.展开更多
Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion ...Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.展开更多
The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver(Ag)−Magnesium oxide(MgO)hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone,...The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver(Ag)−Magnesium oxide(MgO)hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone,with the influence of transverse magnetic field and thermal radiation.The physical flow problem has been modeled with coupled partial differential equations.We apply similarity transformations to the nondimensionalized equations,and the resulting nonlinear differential equations are solved using overlapping grid multidomain spectral quasilinearization method.The flow behavior for the fluid is scrutinized under the impact of diverse physical constraints,which are illustrated graphically.The results of the skin friction coefficient and Nusselt number varying different flow parameters are presented in the form of a table.It is observed that the main flow of the hybrid nanofluid,nano particle fraction of silver and Magnesium/water,enhances compared to the mono-nano fluid MgO as the coupling number increases.The application of studies like this can be found in the atomization process of liquids such as centrifugal pumps,viscometers,rotors,fans.展开更多
In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone p...In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.21978110 and 51772126)the Natural Science Foundation of Beijing Municipal(No.L182062)+6 种基金the Talents Project of Beijing Municipal Committee Organization Department(No.2018000021223ZK21)the Yue Qi Young Scholar Project of China University of Mining&Technology(Beijing)(No.2017QN17)the Fundamental Research Funds for the Central Universities(No.2020XJJD01 and 2020YJSJD01)Jilin Province Science and Technology Department Program(Nos.20200201187JC and 20190101009JH)the"13th five‐year"Science and Technology Project of Jilin Provincial Education Department(No.JJKH20200407KJ)Jilin Province Development and Reform Commission Program(No.2020C026‐3)Jilin Province Fund for Talent Development Program(No.[2019]874).
文摘The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874020 and 52004022)
文摘Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by re-newable energy.Herein,a novel self-supporting hierarchically porous Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure as bifunctional electrocatalyst was constructed based on porous Ni-Fe electrodeposition on three-dimensional(3D)carbon fiber cloth,in situ oxidation,and chemical sulfuration.Results showed that the Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure with a large specific surface area exhibits good bifunctional activity and stability for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)because of the abundance of active sites,synergistic effect of the heterostructure,superhydrophilic surface,and stable,self-supporting structure.The results further confirmed that the Ni_(x)Fe-S phase in the heterostructure is transformed into metal oxides/hydroxides and Ni_(3)S_(2) during OER.Compared with the commercial 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer,the self-supporting Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) electrolyzer exhibits better stability and lower cell voltage in the fluctu-ating current density range of 10-500 mA/cm^(2).Particularly,the cell voltage of Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) is only approximately 3.91 V at an industrial current density of 500 mA/cm^(2),which is lower than that of the 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer(i.e.,approximately 4.79 V).This work provides a promising strategy to develop excellent bifunctional electrocatalysts for fluctuating overall water splitting.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
基金supported by the National Key Research and Development Program of China(2018YFB1106303)Scientific Research Foundation of CAUC(2017QD10S).
文摘The integration of topology optimization(TO)and additive manufacturing(AM)technologies can create significant synergy benefits,while the lack of AM-friendly TO algorithms is a serious bottleneck for the application of TO in AM.In this paper,a TO method is proposed to design self-supporting structures with an explicit continuous self-supporting constraint,which can be adaptively activated and tightened during the optimization procedure.The TO procedure is suitable for various critical overhang angles(COA),which is integrated with build direction assignment to reduce performance loss.Besides,a triangular directional self-supporting constraint sensitivity filter is devised to promote the downward evolution of structures and maintain stability.Two numerical examples are presented;all the test cases have successfully converged and the optimized solutions demonstrate good manufacturability.In the meanwhile,a fully self-supporting design can be obtained with a slight cost in performance through combination with build direction assignment.
基金Project supported by the National Natural Science Foundation of China(Grant No.62188102)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022JM-316)the Fund from the Ministry of Education of China(Grant No.8091B042112)。
文摘A self-supporting T-shaped gate(SST-gate) GaN device and process method using electron beam lithography are proposed.An AlGaN/GaN high-electron-mobility transistor(HEMT) device with a gate length of 100 nm is fabricated by this method.The current gain cutoff frequency(f_(T)) is 60 GHz,and the maximum oscillation frequency(f_(max)) is 104 GHz.The current collapse has improved by 13% at static bias of(V_(GSQ),V_(DSQ))=(-8 V,10 V),and gate manufacturing yield has improved by 17% compared with the traditional floating T-shaped gate(FT-gate) device.
基金supported by the National Natural Science Foundation of China (51874020 and 52004022)the Fundamental Research Funds for the Central Universities (FRF-IP-19-001)。
文摘Metal sulfides with high theoretical capacities are expected as promising cathode materials of Al batteries(AIBs). However, powdery active materials are mainly synthesized and loaded on current collector by insulating binder without capacity. Meanwhile, S as inert element in metal sulfides can not usually provide capacity. So, powdery metal sulfides only exhibit limiting practical capacity and poor cycling stability due to weak conductivity and low mass utilization. Herein, the novel self-supporting and dual-active Co-S nanosheets on carbon cloth (i.e. Co-S/CC) with hierarchically porous structure are constructed as cathode of AIBs. Co-S nanosheets are derived from ZIF-67 nanosheets on CC by a facile ligand replacement reaction. As a result, the binder-free Co-S/CC cathode with good conductivity delivers excellent initial discharge capacity of 383.4 m Ah g^(-1)(0.211 m Ah cm^(-2)) at current density of 200 m A g^(-1)and maintain reversible capacity of 156.9 m Ah g^(-1)(0.086 m Ah cm^(-2)) with Coulombic efficiency of 95.8% after 500 cycles,which are much higher than those of the traditional slurry-coating cathodes. Both Co and S as active elements in Co-S/CC contribute to capacity, which leads to a high mass utilization. This work provides a significant strategy for the construction of self-supporting metallic cathode for advanced high-energy density Al battery.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
文摘Synthesis of zeolite LTN (“Linde Type N”) was investigated under insertion of a SiO2-rich filtration residue (FR) from waste water cleaning of the silane production. A new synthesis procedure was therefore developed applying a flotation mechanism with the aim to grow LTN in form of thin membrane like sheets. Preparation starts with preactivation of FR by slurrying first in alkaline solution, followed by an addition of aluminate solution and citric acid. The latter was added as suitable chelating agent for the initiation of the flotation process. In the course of these experiments, we succeeded in synthesizing zeo-lite LTN with more or less zeolite SOD as byproduct in the form of a stable compact membrane-like layer at low temperature of 60℃. The crystallization was performed under isotherm static conditions in an open reaction system without addition of organic templates as structure directing agents (OSDA’s). FR was utilized as a total substitute of sodium silicate in all experiments and an expansive pre-treatment procedure like calcinations was not needed. Furthermore, membrane formation with LTN of usual synthesis needs chemically functionalized supports. In contrast self-supporting membranous LTN layers were grown for the first time in the present study.
文摘Taking B2C E-commerce enterprises as the center, it can be divided into a set of logistics activities upstream supply chain logistics producer to B2C e-commerce enterprises, and the B2C e-commerce enterprise logistics to client consumer, and the paper focuses on the study of self-supporting logistics for the E-commerce enterprise. According to the development status of current B2C electronic commerce enterprise in our country and logistics, the paper study B2C electric business enterprise how to correctly choose the logistics mode and how to promote the business logistics operation level.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+2 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.
基金supported by National Natural Science Foundation of China(No.52075334)。
文摘Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.
文摘The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver(Ag)−Magnesium oxide(MgO)hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone,with the influence of transverse magnetic field and thermal radiation.The physical flow problem has been modeled with coupled partial differential equations.We apply similarity transformations to the nondimensionalized equations,and the resulting nonlinear differential equations are solved using overlapping grid multidomain spectral quasilinearization method.The flow behavior for the fluid is scrutinized under the impact of diverse physical constraints,which are illustrated graphically.The results of the skin friction coefficient and Nusselt number varying different flow parameters are presented in the form of a table.It is observed that the main flow of the hybrid nanofluid,nano particle fraction of silver and Magnesium/water,enhances compared to the mono-nano fluid MgO as the coupling number increases.The application of studies like this can be found in the atomization process of liquids such as centrifugal pumps,viscometers,rotors,fans.
基金The National Natural Science Foundation of China(No.40702047)
文摘In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations.