期刊文献+
共找到5,312篇文章
< 1 2 250 >
每页显示 20 50 100
Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
1
作者 张鹏 李苗 +2 位作者 陈俊文 刘加志 马晓华 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期551-555,共5页
A self-supporting T-shaped gate(SST-gate) GaN device and process method using electron beam lithography are proposed.An AlGaN/GaN high-electron-mobility transistor(HEMT) device with a gate length of 100 nm is fabricat... A self-supporting T-shaped gate(SST-gate) GaN device and process method using electron beam lithography are proposed.An AlGaN/GaN high-electron-mobility transistor(HEMT) device with a gate length of 100 nm is fabricated by this method.The current gain cutoff frequency(f_(T)) is 60 GHz,and the maximum oscillation frequency(f_(max)) is 104 GHz.The current collapse has improved by 13% at static bias of(V_(GSQ),V_(DSQ))=(-8 V,10 V),and gate manufacturing yield has improved by 17% compared with the traditional floating T-shaped gate(FT-gate) device. 展开更多
关键词 GAN high-electron-mobility transistor(HEMT) self-supporting T-GATE
下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries 被引量:1
2
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction self-supported air electrodes Flexible zinc-air batteries
下载PDF
Recent advances of carbon fiber-based self-supported electrocatalysts in oxygen electrocatalysis
3
作者 Jinyu Han Nanping Deng +7 位作者 Hao Chi Gang Wang Yilong Wang Qiang Zeng Zhaozhao Peng Bowen Cheng Baoming Zhou Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期334-363,共30页
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i... Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts. 展开更多
关键词 Carbon fiber self-supported electrocatalysts ORR OER
下载PDF
Carbon-based flexible self-supporting cathode for lithium-sulfur batteries:Progress and perspective 被引量:11
4
作者 Qinghuiqiang Xiao Jinlin Yang +7 位作者 Xiaodong Wang Yirui Deng Peng Han Ning Yuan Lei Zhang Ming Feng Chang‐an Wang Ruiping Liu 《Carbon Energy》 CAS 2021年第2期271-302,共32页
The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as... The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB. 展开更多
关键词 carbon FLEXIBLE lithium sulfur batteries self-supporting
下载PDF
Self-supporting and hierarchically porous Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting 被引量:4
5
作者 Wenjing Yan Jintao Zhang +3 位作者 Aijing Lü Songle Lu Yiwei Zhong Mingyong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1120-1131,共12页
Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by re-newable energy.Herein,a novel self-supporting hierarchically porous Ni_(x)Fe-S/NiF... Stable non-noble metal bifunctional electrocatalysts are one of the challenges to the fluctuating overall water splitting driven by re-newable energy.Herein,a novel self-supporting hierarchically porous Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure as bifunctional electrocatalyst was constructed based on porous Ni-Fe electrodeposition on three-dimensional(3D)carbon fiber cloth,in situ oxidation,and chemical sulfuration.Results showed that the Ni_(x)Fe-S/NiFe_(2)O_(4) heterostructure with a large specific surface area exhibits good bifunctional activity and stability for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)because of the abundance of active sites,synergistic effect of the heterostructure,superhydrophilic surface,and stable,self-supporting structure.The results further confirmed that the Ni_(x)Fe-S phase in the heterostructure is transformed into metal oxides/hydroxides and Ni_(3)S_(2) during OER.Compared with the commercial 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer,the self-supporting Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) electrolyzer exhibits better stability and lower cell voltage in the fluctu-ating current density range of 10-500 mA/cm^(2).Particularly,the cell voltage of Ni1/5Fe-S/NiFe_(2)O_(4)||Ni1/2Fe-S/NiFe_(2)O_(4) is only approximately 3.91 V at an industrial current density of 500 mA/cm^(2),which is lower than that of the 20wt%Pt/C||IrO_(2)-Ta_(2)O_(5) electrolyzer(i.e.,approximately 4.79 V).This work provides a promising strategy to develop excellent bifunctional electrocatalysts for fluctuating overall water splitting. 展开更多
关键词 self-supporting hierarchically porous structure HETEROSTRUCTURE bifunctional catalyst overall water splitting
下载PDF
Self-supporting NiFe LDH-MoS_(x) integrated electrode for highly efficient water splitting at the industrial electrolysis conditions 被引量:3
6
作者 Han Zhang Guoqiang Shen +3 位作者 Xinying Liu Bo Ning Chengxiang Shi Lun Pan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1732-1741,共10页
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ... Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis. 展开更多
关键词 self-supporting integrated electrode NiFe LDH Electronic structure modulation Industrial alkaline water electrolysis Membrane-electrode assembly
下载PDF
Topology Optimization of Self-Supporting Structures for Additive Manufacturing with Adaptive Explicit Continuous Constraint 被引量:1
7
作者 Jun Zou Haolei Mou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期451-469,共19页
The integration of topology optimization(TO)and additive manufacturing(AM)technologies can create significant synergy benefits,while the lack of AM-friendly TO algorithms is a serious bottleneck for the application of... The integration of topology optimization(TO)and additive manufacturing(AM)technologies can create significant synergy benefits,while the lack of AM-friendly TO algorithms is a serious bottleneck for the application of TO in AM.In this paper,a TO method is proposed to design self-supporting structures with an explicit continuous self-supporting constraint,which can be adaptively activated and tightened during the optimization procedure.The TO procedure is suitable for various critical overhang angles(COA),which is integrated with build direction assignment to reduce performance loss.Besides,a triangular directional self-supporting constraint sensitivity filter is devised to promote the downward evolution of structures and maintain stability.Two numerical examples are presented;all the test cases have successfully converged and the optimized solutions demonstrate good manufacturability.In the meanwhile,a fully self-supporting design can be obtained with a slight cost in performance through combination with build direction assignment. 展开更多
关键词 Topology optimization additive manufacturing self-supporting constraint build direction assignment gradual evolution
下载PDF
Self-supported metal(Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis 被引量:1
8
作者 Qiuyan Jin Liping Xiao +2 位作者 Weidong He Hao Cui Chengxin Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1644-1653,共10页
To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently neede... To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production. 展开更多
关键词 Trifunctional catalysts self-supported electrodes Switchable water splitting Flexible Zn-air battery Self-powered system
下载PDF
Self-supporting and dual-active 3D Co-S nanosheets constructed by ligand replacement reaction from MOF for rechargeable Al battery
9
作者 Aijing Lv Songle Lu +3 位作者 Mingyong Wang Haotian Shi Wenjing Yan Shuqiang Jiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期35-43,I0002,共10页
Metal sulfides with high theoretical capacities are expected as promising cathode materials of Al batteries(AIBs). However, powdery active materials are mainly synthesized and loaded on current collector by insulating... Metal sulfides with high theoretical capacities are expected as promising cathode materials of Al batteries(AIBs). However, powdery active materials are mainly synthesized and loaded on current collector by insulating binder without capacity. Meanwhile, S as inert element in metal sulfides can not usually provide capacity. So, powdery metal sulfides only exhibit limiting practical capacity and poor cycling stability due to weak conductivity and low mass utilization. Herein, the novel self-supporting and dual-active Co-S nanosheets on carbon cloth (i.e. Co-S/CC) with hierarchically porous structure are constructed as cathode of AIBs. Co-S nanosheets are derived from ZIF-67 nanosheets on CC by a facile ligand replacement reaction. As a result, the binder-free Co-S/CC cathode with good conductivity delivers excellent initial discharge capacity of 383.4 m Ah g^(-1)(0.211 m Ah cm^(-2)) at current density of 200 m A g^(-1)and maintain reversible capacity of 156.9 m Ah g^(-1)(0.086 m Ah cm^(-2)) with Coulombic efficiency of 95.8% after 500 cycles,which are much higher than those of the traditional slurry-coating cathodes. Both Co and S as active elements in Co-S/CC contribute to capacity, which leads to a high mass utilization. This work provides a significant strategy for the construction of self-supporting metallic cathode for advanced high-energy density Al battery. 展开更多
关键词 Cobalt sulfide Ligand replacement reaction self-supporting Aluminum battery
下载PDF
Synthesis of Zeolite LTN-(SOD) Self-Supporting Membranes from SiO2-Rich Industrial Waste
10
作者 Valeriy Petrov Josef-Christian Buhl 《Journal of Materials Science and Chemical Engineering》 2018年第3期68-84,共17页
Synthesis of zeolite LTN (“Linde Type N”) was investigated under insertion of a SiO2-rich filtration residue (FR) from waste water cleaning of the silane production. A new synthesis procedure was therefore developed... Synthesis of zeolite LTN (“Linde Type N”) was investigated under insertion of a SiO2-rich filtration residue (FR) from waste water cleaning of the silane production. A new synthesis procedure was therefore developed applying a flotation mechanism with the aim to grow LTN in form of thin membrane like sheets. Preparation starts with preactivation of FR by slurrying first in alkaline solution, followed by an addition of aluminate solution and citric acid. The latter was added as suitable chelating agent for the initiation of the flotation process. In the course of these experiments, we succeeded in synthesizing zeo-lite LTN with more or less zeolite SOD as byproduct in the form of a stable compact membrane-like layer at low temperature of 60℃. The crystallization was performed under isotherm static conditions in an open reaction system without addition of organic templates as structure directing agents (OSDA’s). FR was utilized as a total substitute of sodium silicate in all experiments and an expansive pre-treatment procedure like calcinations was not needed. Furthermore, membrane formation with LTN of usual synthesis needs chemically functionalized supports. In contrast self-supporting membranous LTN layers were grown for the first time in the present study. 展开更多
关键词 LTN ZEOLITE self-supporting MEMBRANE 60℃ Synthesis Industrial Waste FLOTATION
下载PDF
Study on the Self-supporting Logistics Mode based on B2C E-commerce Enterprises
11
作者 Ting LI 《International Journal of Technology Management》 2015年第2期87-89,共3页
Taking B2C E-commerce enterprises as the center, it can be divided into a set of logistics activities upstream supply chain logistics producer to B2C e-commerce enterprises, and the B2C e-commerce enterprise logistics... Taking B2C E-commerce enterprises as the center, it can be divided into a set of logistics activities upstream supply chain logistics producer to B2C e-commerce enterprises, and the B2C e-commerce enterprise logistics to client consumer, and the paper focuses on the study of self-supporting logistics for the E-commerce enterprise. According to the development status of current B2C electronic commerce enterprise in our country and logistics, the paper study B2C electric business enterprise how to correctly choose the logistics mode and how to promote the business logistics operation level. 展开更多
关键词 B2C E-commerce Logistics distribution self-supporting Logistics Mode Operating mechanism
下载PDF
Cost Comparison of Different Types of Formworks
12
作者 Kiran Devi Tushar Yadav 《Journal of Building Material Science》 2023年第1期32-38,共7页
Formwork is the temporary moulds in the construction which is fabricated based on the drawing and design of the structure and into which the concrete is poured to form the required structure.Formwork is an essential p... Formwork is the temporary moulds in the construction which is fabricated based on the drawing and design of the structure and into which the concrete is poured to form the required structure.Formwork is an essential part of the construction as it has been used by the Romans.The formworks must be strong enough to withstand all types of loads.The joint must be in proper condition to avoid any kind of leakages.The materials used for the formworks should be economical,easily available and durable.The formworks can be made up of different materials such as plywood,steel,aluminum,composite material,etc.In steel formwork the plates used for the slab support are made up of galvanized steel and these are fabricated as per the requirements.Aluminum plates are used in the aluminum framework along with the other components made up of aluminum.The selection of a suitable framework is important in any project because it bears about 25%to 30%cost of the total cost of construction.In the present study,different types of formworks such as steel,plywood and aluminum were studied in a project and a comparison was made on the reusability and easiness in handling and maintenance.Also,a comparison of the formwork used in the construction of the 5th and 11th-floor tower based on the specific plan and drawing was done.The results showed that the aluminum formwork was found to be efficient and suitable among all formworks,although the cost was higher compared to other formwork materials. 展开更多
关键词 formworks Steel formworks Plywood formworks Aluminum formworks Cost analysis
下载PDF
大跨度混凝土钢筋框架梁挠度超限研究 被引量:3
13
作者 张玉明 尚彦宾 +1 位作者 边广生 陈国斌 《建筑技术》 2024年第3期322-324,共3页
根据大量的工程实践,大跨度钢筋混凝土框架梁由于设计不合理引起大跨度梁超限的工程案例很少,大多数是施工原因导致挠度超限。以某工程挠度超限的大跨度钢筋混凝土梁为例,根据设计资料和现场检测资料,从设计和施工两方面,利用数值计算... 根据大量的工程实践,大跨度钢筋混凝土框架梁由于设计不合理引起大跨度梁超限的工程案例很少,大多数是施工原因导致挠度超限。以某工程挠度超限的大跨度钢筋混凝土梁为例,根据设计资料和现场检测资料,从设计和施工两方面,利用数值计算和有限元模拟,验证分析大跨度钢筋混凝土框架梁挠度超限的原因。验证分析表明,梁板混凝土实际浇筑厚度超限与梁模板起拱高度不足可能引起梁挠度增加。当梁下立杆稳定承载力不足时,梁也易随立杆屈曲变形产生较大挠度。 展开更多
关键词 梁挠度 模板起拱高度 稳定承载力 立杆屈曲
下载PDF
拼接成型UHPC免拆模板钢筋混凝土柱的抗震性能 被引量:2
14
作者 王朋 尤学辉 +3 位作者 黄杰 史庆轩 陶毅 王秋维 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第1期103-116,共14页
为研究超高性能混凝土(UHPC)免拆模板钢筋混凝土(URC)柱的抗震性能,选取UHPC免拆模板拼接方式和表面处理方式为试验设计参数,制作并完成了9个URC柱和1个钢筋混凝土(RC)柱的拟静力加载试验。模板拼接方式为螺栓加角钢连接、螺栓连接和环... 为研究超高性能混凝土(UHPC)免拆模板钢筋混凝土(URC)柱的抗震性能,选取UHPC免拆模板拼接方式和表面处理方式为试验设计参数,制作并完成了9个URC柱和1个钢筋混凝土(RC)柱的拟静力加载试验。模板拼接方式为螺栓加角钢连接、螺栓连接和环氧树脂砂浆连接;表面处理方式为光面处理、气泡膜印花处理和设肋处理,通过拟静力试验研究了模板拼接方式及表面处理方式对该类柱抗震性能的影响。此外,基于平截面假定,提出了URC柱的正截面偏压承载力计算式。结果表明:峰值荷载前,UHPC模板与核心混凝土黏结面无明显破坏,URC柱表现出良好的整体性,尤其是采用螺栓加角钢连接的URC柱,即使加载至极限位移时,也没有发生界面黏结失效破坏;与普通RC柱相比,URC柱的承载力提高了6.4%~43.3%,延性提高了11.4%~48.7%,耗能能力提高了27.7%~85.3%;三种连接方式中,采用螺栓加角钢连接的URC柱承载力最高,连接最可靠。最后,基于平截面假定提出的公式计算值与试验值吻合较好,可为工程应用提供参考。 展开更多
关键词 超高性能混凝土 免拆模板 钢筋混凝土柱 抗震性能 承载力计算
下载PDF
3D打印混凝土永久模板叠合柱的抗压性能数值模拟研究 被引量:1
15
作者 张治成 叶志凯 +2 位作者 孙晓燕 王海龙 高君峰 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期194-206,共13页
为深入研究3D打印混凝土永久模板叠合柱的抗压性能,基于3D打印混凝土永久模板叠合柱及同尺寸整体现浇对照柱试验建立构件数值模型,模拟分析其轴压荷载-位移响应及失效形态。针对界面粘结性能、现浇混凝土抗压强度、打印模板厚度、荷载... 为深入研究3D打印混凝土永久模板叠合柱的抗压性能,基于3D打印混凝土永久模板叠合柱及同尺寸整体现浇对照柱试验建立构件数值模型,模拟分析其轴压荷载-位移响应及失效形态。针对界面粘结性能、现浇混凝土抗压强度、打印模板厚度、荷载偏心距等参数开展3D打印混凝土永久模板叠合柱的抗压性能计算分析,研究表明:叠合柱轴压极限承载力随着薄弱界面剪切强度、刚度及现浇混凝土抗压强度的增大而增大。由于打印材料的抗压强度高于现浇混凝土,叠合柱抗压极限承载力提升率与打印模板厚度呈近似线性关系,叠合圆柱的抗压极限承载力随着荷载偏心距的增大而降低,呈近似线性负相关。此外,偏心距对叠合圆柱极限承载力下降幅度的影响大于现浇圆柱。 展开更多
关键词 3D打印混凝土 永久模板 叠合柱 抗压性能 数值模拟
下载PDF
织物增强混凝土永久模板叠合试件抗氯离子渗透性能研究
16
作者 陈欣 王国杰 林颖 《混凝土》 CAS 北大核心 2024年第8期158-162,共5页
织物增强混凝土(TRC)由高性能细骨料混凝土基体与纤维网组成,TRC永久模板与核心混凝土组成叠合试件。为揭示叠合试件氯离子渗透作用规律,确定永久模板最佳厚度范围,以TRC永久厚度、耐碱纤维网层数以及界面处理方式为变量,进行叠合试件... 织物增强混凝土(TRC)由高性能细骨料混凝土基体与纤维网组成,TRC永久模板与核心混凝土组成叠合试件。为揭示叠合试件氯离子渗透作用规律,确定永久模板最佳厚度范围,以TRC永久厚度、耐碱纤维网层数以及界面处理方式为变量,进行叠合试件抗氯离子渗透性能试验研究和计算分析。结果表明:与未设置永久模板相比,当TRC永久模板厚度为10~50 mm时,叠合试件氯离子扩散系数分别降低73.2%~95.6%。耐碱纤维编网对永久模板抗氯离子渗透性能没有增强作用。水泥净浆涂刷、表面凿毛、短切纤维插入三种界面处理方式对叠合试件氯离子渗透系数和渗透深度的影响不显著。结合Duracrete模型定量分析,给出了海洋环境不同工况下TRC永久模板厚度建议范围。 展开更多
关键词 永久模板 叠合试件 氯离子扩散系数 模板厚度
下载PDF
基于铝模板BIM自动配模需求的结构模型研究
17
作者 赵全斌 李烨 +1 位作者 马广交 胡浩南 《土木建筑工程信息技术》 2024年第4期123-127,共5页
针对现有铝模板自动配模效率低和准确性差的问题,主要由BIM结构模型信息量大、建模规范性差及配模规则约束不清晰等因素造成。本文以铝模板配模设计阶段中的结构模型为研究重点,首先分析了模型中有效的空间信息与构件信息,然后在模型建... 针对现有铝模板自动配模效率低和准确性差的问题,主要由BIM结构模型信息量大、建模规范性差及配模规则约束不清晰等因素造成。本文以铝模板配模设计阶段中的结构模型为研究重点,首先分析了模型中有效的空间信息与构件信息,然后在模型建模、分类编码以及避让策略方面制定了相应规则。通过选取工程案例并开发测试插件以实现信息提取与自动配模,验证了模型信息的有效性和规则的可行性。研究结果表明,所提方法不仅能显著提高铝模板BIM自动配模的效率,还能为其他BIM结构模型的相关研究提供借鉴和支持。 展开更多
关键词 铝模板 BIM 自动配模 结构模型
下载PDF
基于拉丁超立方抽样的高大模板支撑体系承载力有限元分析
18
作者 陆征然 于珈郦 +2 位作者 路林翰 林志浩 孙杨 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第3期461-469,共9页
目的研究不同缺陷构配件下高大模板支撑体系承载性能的变化,为高大模板支撑体系的布置、构配件的搭配及使用提供指导,以预防和减少其在实际工程中的坍塌事故。方法基于拉丁超立方抽样,考虑构配件缺陷对三种搭设参数模板支撑体系承载性... 目的研究不同缺陷构配件下高大模板支撑体系承载性能的变化,为高大模板支撑体系的布置、构配件的搭配及使用提供指导,以预防和减少其在实际工程中的坍塌事故。方法基于拉丁超立方抽样,考虑构配件缺陷对三种搭设参数模板支撑体系承载性能的影响,随机取线性屈曲分析中一阶屈曲承载力的0.1%~0.2%作为假想水平力,对构配件性能缺陷进行有限元分析,探究不同搭设参数下支撑体系承载力及失稳模式。结果SPR对承载力的影响大于D和t,并且双因素耦合对承载力的影响大于单因素。立杆步距的变化对支撑体系承载力的影响大于立杆间距。随着影响因素耦合数量的增加,步距对支撑体系承载性能的影响也会随之增大。结论支撑体系搭设过程中将存在缺陷的构配件使用时分散排布,可以防止高大模板支撑体系整体失稳倒塌。 展开更多
关键词 高大模板支架 初始缺陷 因素耦合 随机有限元 承载力
下载PDF
岩棉复合保温外模板承载力及温度效应分析
19
作者 赵建军 付佳欣 李爽 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第1期130-138,共9页
为了提高建筑外围护结构施工效率及解决传统外保温系统长期存在的易脱落和易着火问题,提出了一种集保温和建筑模板于一体的岩棉复合保温外模板(RW-CIEF)体系。RW-CIEF由内到外依次为内侧加强层、岩棉保温芯材、黏结层、保温过渡层以及... 为了提高建筑外围护结构施工效率及解决传统外保温系统长期存在的易脱落和易着火问题,提出了一种集保温和建筑模板于一体的岩棉复合保温外模板(RW-CIEF)体系。RW-CIEF由内到外依次为内侧加强层、岩棉保温芯材、黏结层、保温过渡层以及外侧加强层。以哈尔滨市为例,基于全寿命周期成本(life cycle cost,C lc)确定了岩棉保温芯材的最佳厚度。采用有限元分析与理论计算相结合的方法探求了RW-CIEF在工程中的可行性,分析了RW-CIEF的抗弯性能、施工承载力及温度效应下的应力和变形,讨论了开槽形式、开槽宽度、开槽深度以及开槽间距对RW-CIEF抗弯性能的影响。结果表明:RW-CIEF的抗弯性能理论计算结果与有限元分析结果有较高的一致性;开槽处理可有效提高RW-CIEF的抗弯性能,综合抗弯性能、热工特性及加工角度,建议开槽形式选用对应开井字槽或对应开纵槽,开槽深度和宽度均为10 mm,开槽间距为150 mm;设计的RW-CIEF满足施工承载力,可保证外围护结构保温工程施工质量;由温度效应产生的最大拉应力和压应力均未超过RW-CIEF的外侧加强层承载力,反映出RW-CIEF出现夏季空鼓或冬季开裂现象的可能性极小。提出的RW-CIEF体系可为外围护结构保温工程及建筑模板工程未来研究方向提供一种新的思路和方法。 展开更多
关键词 岩棉复合保温外模板 抗弯性能 开槽处理 施工承载力 温度效应
下载PDF
一种新型预制装配式免拆模板设计与开发
20
作者 程强强 姚越 《江苏建筑职业技术学院学报》 2024年第1期1-4,共4页
为克服传统建筑模板施工质量不高、工序多、周转率低和现场环境乱等质量缺陷,在总结现有免拆模板的基础上设计、开发了一种可实现装饰装修一体化的新型预制装配式免拆模板。本文介绍了新型装配式免拆模板的基本构造及施工要点,为新型装... 为克服传统建筑模板施工质量不高、工序多、周转率低和现场环境乱等质量缺陷,在总结现有免拆模板的基础上设计、开发了一种可实现装饰装修一体化的新型预制装配式免拆模板。本文介绍了新型装配式免拆模板的基本构造及施工要点,为新型装配式免拆模板的推广应用提供一定的借鉴和参考。 展开更多
关键词 预制装配式 免拆模板 施工工艺 构造
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部