The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ...The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.展开更多
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c...Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions.展开更多
The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func...The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage cave...Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns.展开更多
Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization...Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i...Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength wer...On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed.The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway.Based on the roadway excavation range,a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly.The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability.The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions.The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.展开更多
Engineering disasters occur frequently and violently with the increase in mining depth, which is mostly due to insufficient study on the failure mechanism of the deep rock mass. In this paper, theoretical and experime...Engineering disasters occur frequently and violently with the increase in mining depth, which is mostly due to insufficient study on the failure mechanism of the deep rock mass. In this paper, theoretical and experimental researches on the failure behaviors and deformation control of deep surrounding rock in recent years were reviewed. Macro/meso failure mechanism of deep rock or coal-rock combined body under different loading conditions have been systematically investigated. Stress gradient failure theory of surrounding rock, uniform strength support in the deep roadway, and the analogous hyperbola movement model of overlying strata were preliminary established and a combined grouting control technology for surface and underground was proposed. Abovementioned achievements are expected to offer theoretical bases and technical supports for the exploitation of China's deep mineral resources in the future.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the in...To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.展开更多
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SP...Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.展开更多
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining...To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we successfully resolve the technological difficulties of longwall mining equipment and surrounding rock control for steep dipping seam, making a breakthrough of longwall mining technology with steep dipping seam.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(grant No.52074169,No.51704280)the China Postdoctoral Science Foundation(No.2023M732109)the Opening Foundation of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2021FK02).
文摘The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.
基金jointly supported by the National Natural Science Foundation of China(Grant Number 12262018)the Technology Funding Scheme of China Construction Second Engineering Bureau LTD(Grant Number 2020ZX150002)Special Funds for Guiding Local Scientific and Technological Development by The Central Government(Grant Number 22ZY1QA005)。
文摘Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions.
基金supported by the National Natural Science Foundation of China(Nos.12302264,52104004,12072170,and 12202225)the Natural Science Foundation of Shandong Province(No.ZR2021QA042)Special Fund for Taishan Scholar Project(No.Tsqn202211180).
文摘The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金funded by the Major science and technology project of CNOOC(KJZX-2022-12-XNY-0803).
文摘Underground liquified natural gas(LNG)storage is essential in guaranteeing national energy strategic reserves,and its construction is being accelerated.The stability of surrounding rock of underground LNG storage caverns under stress-low temperature coupling effect is the key factor determining the feasibility of LNG storage.First,a mathematical model used for controlling the stress-low temperature coupling and the processes of rock damage evolution is given,followed by a 2-D numerical execution process of the mathematical model mentioned above described based on Comsol Multiphysics and Matlab code.Finally,a series of 2-D simulations are performed to study the influence of LNG storage cavern layout,burial depth,temperature and internal pressure on the stability of surrounding rocks of these underground storage caverns.The results indicate that all the factors mentioned above affect the evolution of deformation and plastic zone of surrounding rocks.The research results contribute to the engineering design of underground LNG storage caverns.
基金funded by the Natural Science Foundation of Hebei Province(No:E2020210068)Project of Science and Technology Research and Development Program of China National Railway Group Co.,Ltd.(No:N2020G009).
文摘Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
文摘Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
基金supported and financed from Special Funds for Basic Research Business Fees of China Academy of Safety Science and Technology(Nos.2016JBKY16,2017JBKY05)National Key Research and Development Program of China(No.2017YFC0804603)Subject of Beijing Science and Technology Commission(No.Z171100002317008)
文摘On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness.In this study,impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed.The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway.Based on the roadway excavation range,a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly.The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability.The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions.The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.
基金This study was financially supported by the National Natural Science Foundation of China (51622404, 11572343 and 41877257)the Yueqi outstanding scholar of CUMTB, Outstanding Young Talents of “Ten Thousand People Plan (W02070044)”Beijing Excellent Young Scientists.
文摘Engineering disasters occur frequently and violently with the increase in mining depth, which is mostly due to insufficient study on the failure mechanism of the deep rock mass. In this paper, theoretical and experimental researches on the failure behaviors and deformation control of deep surrounding rock in recent years were reviewed. Macro/meso failure mechanism of deep rock or coal-rock combined body under different loading conditions have been systematically investigated. Stress gradient failure theory of surrounding rock, uniform strength support in the deep roadway, and the analogous hyperbola movement model of overlying strata were preliminary established and a combined grouting control technology for surface and underground was proposed. Abovementioned achievements are expected to offer theoretical bases and technical supports for the exploitation of China's deep mineral resources in the future.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金supported by the National Natural Science Foundation for Youth(No.51304200)the China Postdoctoral Science Foundation Project(No.2013M540477)+1 种基金the Superior Subject Construction Project of Universities in Jiangsu Province,the Independent Research Project of State Key Laboratory of Coal Resources and Mine Safety(No.SKLCRSM11X02)the National Natural Science Foundation of China(No.51074163)
文摘To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rockcoal pillars in a room-and-pillar gob,the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3^(-2)coal seam of Tanggonggou mine.The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view.Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3^(-2)room-and-pillar gob.The results show that:if we want the system to destabilize,the collective energy in roof-and-floor must be larger than that in the coal pillar.When the stiffness of the coal pillars and the roof-and-floor are both greater than zero,the system is stable.When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero,the system is statically destroyed.When the sum of the coal pillars and the roof-floor stiffness is negative,the system suffers from severe damages.For equal advance distances of the coal mining face,the wider coal pillars can reduce the probability of domino type instability.Conversely,the smaller width pillars can increase the instability probability.Domino type instability of surrounding rock-coal pillars is predicted to be unlikely when the width of coal pillars is not less than 8 m.
基金sponsored by National Key R&D Program of China (No. 2017YFC0603002)National Natural Science Foundation of China (No. 51974264)State Key Laboratory of Coal Resource and Safety Mining, China University of Mining & Technology (No. SKLCRSM18KF023)
文摘Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
文摘To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we successfully resolve the technological difficulties of longwall mining equipment and surrounding rock control for steep dipping seam, making a breakthrough of longwall mining technology with steep dipping seam.