期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
In-situ self-templated preparation of porous core-shell Fe_(1-x)S@N,S co-doped carbon architecture for highly efficient oxygen reduction reaction
1
作者 Zhi Li Wei Wang +6 位作者 Minjie Zhou Binhong He Wenqing Ren Liang Chen Wenyuan Xu Zhaohui Hou Yangyang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期310-317,共8页
Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial... Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial role in determining the ORR performance.In this work,we for the first time report the successful fabrication of porous core-shell Fe_(1-x)S@N,S co-doped carbon(Fe_(1-x)S@NSC-t,t represents etching time)by a novel in-situ self-template induced strategy using Fe3O4 nanospheres and pyrrole as sacrificial self-template.The post-polymerization of pyrrole can be accomplished by the Fe^(3+)released through the etching of Fe_(3)O_(4) by HCl acid.Thus,the etching time has a significant effect on the morphology,structure,composition a nd ORR performance of Fe_(1-x)S@NSC-t.Based on the cha racterizations,we find Fe_(1-x)S@NSC-24 can realize effective and balanced combination of Fe_(1-x)S and NSC,possessing porous core-shell architecture,optimized structure defect,specific surface area and doped heteroatoms configurations(especially for pyridinic N,graphitic N and Fe-N structure).These features thus lead to outstanding catalytic activity and cycling stability towards ORR.Our work provides a good guidance on the design of TMC/carbon-based electrodes with unique stable morphology and optimized structure and composition. 展开更多
关键词 In-situ self-template Induced polymerization Porous core-shell Fe_(1-x)S@NSC Oxygen reduction reaction
下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
2
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes self-template method Wastewater treatment Supercapacitor electrode
下载PDF
Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation 被引量:2
3
作者 Fei-Xiang Ma Fucong Lyu +8 位作者 Yingxue Diao BinBin Zhou Jianghua Wu Fengwen Kang Zebiao Li Xufen Xiao Peng Wang Jian Lu Yang Yang Li 《Nano Research》 SCIE EI CSCD 2022年第4期2887-2894,共8页
Fabrication of single-crystalline metal-organic framework(MOF)hollow nanostructures with two-dimensional(2D)morphologies is a challenging task.Herein,twin-like MOF nanobricks,a quasi-hollow 2D architecture,with multi-... Fabrication of single-crystalline metal-organic framework(MOF)hollow nanostructures with two-dimensional(2D)morphologies is a challenging task.Herein,twin-like MOF nanobricks,a quasi-hollow 2D architecture,with multi-metal nodes and replaceable organic ligands,are uniformly and firmly grown on conductive Ni foam through a generic one-pot approach.The formation process of twin-like MOF nanobricks mainly includes selective epitaxial growth of Fe-rich MOF layer and simultaneously dissolution of the pre-formed Ni-rich metal-organic frameworks(MOFs),all of which can be ascribed to a special self-templated mechanism.The fantastic structural merits of twin-like MOF nanobrick arrays,featuring highly exposed active sites,remarkable electrical conductivity,and hierarchical porosities,enable this material for efficient electrocatalysis.Using bimetallic NiFe-MOFs grown on Ni foam as an example,the resultant twin-like nanobrick arrays can be directly utilized as three-dimensional(3D)integrated electrode for high-performance water oxidation in 1 M KOH with a low overpotential,fast reaction kinetics(28.5 mV·dec^(-1)),and superb stability.Interestingly,the unstable NiFe-MOFs were served as an oxygen evolution reaction(OER)pre-catalyst and the single-crystalline NiFe-MOF precursor can be in-situ topochemically regulated into porous and lowcrystalline NiFeOx nanosheets during the OER process.This work extends the hollowing strategy to fabricate hollow MOFs with 2D architectures and highlights their direct utilization for advanced electrocatalysis. 展开更多
关键词 twin-like structures metal-organic frameworks oxygen evolution reaction self-templated pre-catalysts
原文传递
Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction 被引量:2
4
作者 Ayaz Mahsud Jianian Chen +5 位作者 Xiaolei Yuan Fenglei Lyu Qixuan Zhong Jinxing Chen Yadong Yin Qiao Zhang 《Nano Research》 SCIE EI CSCD 2021年第8期2819-2825,共7页
The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth ab... The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth abundance,and poor stability.Here a self-templated strategy based on metal-organic frameworks(MOFs)is proposed for the fabrication of hollow nitrogen-doped carbon spheres that are embedded with cobalt nanoparticles(Co/HNC).The Co/HNC manifests better ORR activities,methanol tolerance,and stability than commercial Pt/C.The high ORR performance of Co/NHC can be attributed to the hollow structure which provides enlarged electrochemically active surface area,the formation of more Co-N species,and the introduction of defects.This work highlights the significance of rational engineering of MOFs for enhanced ORR activity and stability and offers new routes to the design and synthesis of high-performance electrocatalysts. 展开更多
关键词 COBALT self-templated metal organic framework hollow sphere oxygen reduction reaction
原文传递
Self-templated covalent functionalization of graphitic surfaces with a quasi-periodic pattern
5
作者 Yuanzhi Xia Johannes Seibel Steven De Feyter 《Aggregate》 2022年第4期121-130,共10页
Patterned covalent functionalization of graphitic surfaces(GSs)is of interest in the development of devices and nanocomposite materials.In contrast to the strategies using external templates or control for realizing p... Patterned covalent functionalization of graphitic surfaces(GSs)is of interest in the development of devices and nanocomposite materials.In contrast to the strategies using external templates or control for realizing patterned covalent functionalization of GSs,here,we present a self-templated strategy by exploiting the synergistic effects of chemical and physical functionalization of GSs.Therefore,a diazonium salt is reduced by potassium iodide(KI)in dimethyl sulfoxide while the solution is in contact with a GS,resulting in its spatially heterogeneous,that is,chemical and physical,functionalization.This heterogeneous functionalization leads to a quasiperiodic pattern of striped corrals with three equivalent orientations in the covalent layer.The formation of the striped corrals is ascribed to physisorbed domains formed by self-assembled N_(2),which is produced in situ during the reduction of the diazonium salt,preventing the covalent functionalization. 展开更多
关键词 diazonium chemistry graphitic surfaces patterned covalent functionalization quasi-periodic patterning self-templated strategy
原文传递
High-performance lithium-sulfur battery based on porous N-rich g-C_(3)N_(4) nan-otubes via a self-template method 被引量:2
6
作者 Meng-rong Wu Ming-yue Gao +7 位作者 Shu-ya Zhang Ru Yang Yong-ming Chen Shang-qing Sun Jin-feng Xie Xing-mei Guo Fu Cao Jun-hao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1656-1665,共10页
The commercial development of lithium-sulfur batteries(Li-S)is severely limited by the shuttle effect of lithium polysulfides(LPSs)and the non-conductivity of sulfur.Herein,porous g-C_(3)N_(4) nanotubes(PCNNTs)are syn... The commercial development of lithium-sulfur batteries(Li-S)is severely limited by the shuttle effect of lithium polysulfides(LPSs)and the non-conductivity of sulfur.Herein,porous g-C_(3)N_(4) nanotubes(PCNNTs)are synthesized via a self-template method and utilized as an efficient sulfur host material.The one-dimensional PCNNTs have a high specific surface area(143.47 m^(2)·g^(-1))and an abundance of macro-/mesopores,which could achieve a high sulfur loading rate of 74.7wt%.A Li-S battery bearing the PCNNTs/S composite as a cathode displays a low capacity decay of 0.021% per cycle over 800 cycles at 0.5 C with an initial capacity of 704.8 mAh·g^(-1).PCNNTs with a tubular structure could alleviate the volume expansion caused by sulfur and lithium sulfide during charge/discharge cycling.High N contents could greatly enhance the adsorption capacity of the carbon nitride for LPSs.These synergistic effects contribute to the excellent cycling stability and rate performance of the PCNNTs/S composite electrode. 展开更多
关键词 self-template method porous g-C_(3)N_(4)nanotubes chemical adsorption synergistic effects lithium-sulfur batteries
下载PDF
Synthesis of Octylmethoxycinamate-silica Core-shell Nanoparticles with Self-templating Method
7
作者 ZHANG Qing LI Rui +2 位作者 ZHAI Yong-ai LIU Feng-qi GAO Ge 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第3期339-343,共5页
t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this ... t A self-templating method was employed to synthesize core-shell nanoparticles with octylmethoxycinamate(OMC), a well-known organic UV absorber, as core and nanosilica particles as shell. The characteristic of this method is that the whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer, and all the reactions could be finished in one-pot, which exempts removing template and reduces reaction steps compared to the conventional process. The morphology, structure, particle size distribution, chemical composition and optical property of OMC-SiO2 nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), dynamic light scattering(DLS), FTIR spectrometry and UV absorption spectrometry, respectively. Experiment results indicate that the resulting OMC-SiO2 nanoparticles were perfectly spherical with smooth particle surfaces, and had clear core-shell structures. The particle size could be tuned by altering reaction conditions. In addition, the mechanism of the self-templating method for forming core-shell nanoparticles was discussed. 展开更多
关键词 NANOPARTICLE SILICA Octylmethoxycinamate(OMC) Core-shell structure self-templating method
下载PDF
Intramolecular Hydrogen Bond Self-template Synthesis of Some New Robson-type Macrocyclic Ligands
8
作者 Jin Cai WU Ning TANG +2 位作者 Wei Sheng LIU Min Yu TAN Albert SCCHAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第9期757-760,共4页
The intramolecular hydrogen bond self-template effect was suggested in the process of directly synthesizing the first six chiral metal-free Robson-type macrocyclic ligands. These ligands were characterized by H-1 NMR,... The intramolecular hydrogen bond self-template effect was suggested in the process of directly synthesizing the first six chiral metal-free Robson-type macrocyclic ligands. These ligands were characterized by H-1 NMR, IR, FAB-MS. 展开更多
关键词 self-template macrocyclic ligands
下载PDF
Novel Bilayer-Shelled N,O-Doped Hollow Porous Carbon Microspheres as High Performance Anode for Potassium-Ion Hybrid Capacitors
9
作者 Zhen Pan Yong Qian +3 位作者 Yang Li Xiaoning Xie Ning Lin Yitai Qian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期423-435,共13页
With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-do... With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-doped hollow porous carbon microspheres(NOHPC)anode has been prepared by a self-template method,which is consisted of a dense thin shell and a hollow porous spherical core.Excitingly,the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g^(−1)at 0.1 A g^(−1)and a capacity of 201.1 mAh g^(−1)at 5 A g^(−1)after 6000 cycles.In combination with ex situ characterizations and density functional theory calculations,the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+adsorption and intercalation capabilities,and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure.Meanwhile,the hollow porous activated carbon microspheres(HPAC)cathode with a high specific surface area(1472.65 m^(2)g^(−1))deriving from etching NOHPC with KOH,contributing to a high electrochemical adsorption capacity of 71.2 mAh g^(−1)at 1 A g^(−1).Notably,the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg^(−1)at a power density of 939.6 W kg^(−1)after 6000 consecutive charge-discharge cycles. 展开更多
关键词 self-template method Bilayer-shelled hollow porous structure N O-doped carbon microspheres Dual-carbon potassium‐ion hybrid capacitor
下载PDF
Porous palladium phosphide nanotubes for formic acid electrooxidation 被引量:4
10
作者 Tian-Jiao Wang Yu-Chuan Jiang +4 位作者 Jia-Wei He Fu-Min Li Yu Ding Pei Chen Yu Chen 《Carbon Energy》 SCIE CAS 2022年第3期283-293,共11页
The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palla... The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palladium phosphide(PdxPy)porous nanotubes(PNTs)with different phosphide content(i.e.,Pd3P and Pd5P2)are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II)complex nanorods and succedent phosphating treatment.During the reduction process,the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture.On the basis of the unique synthetic procedure and structural advantages,Pd3P PNTs with optimized phos phide content show outstanding electroactivity and stability for FAEOR.Im portantly,the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction,which effectively enhances the FAEOR electroactivity of Pd3P PNTs.In view of the facial synthesis,excellent electroactivity,high stability,and unordinary selectivity,Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC. 展开更多
关键词 electronic effect formic acid oxidation reaction palladium phosphide porous nanotubes self-template method
下载PDF
Synthesis of Size-Controllable NiCo2S4 Hollow Nanospheres Toward Enhanced Electrochemical Performance 被引量:2
11
作者 Lei Zhang Haitao Zhang +3 位作者 Xiang Chu Fangyan Liu Chunsheng Guo Weiqing Yang 《Energy & Environmental Materials》 2020年第3期421-428,共8页
Although the synthesis of novel nanostructured metal sulfides has been well established,further size-controllable optimization is still valuable to enhance their performance for various applications.Herein,a self-temp... Although the synthesis of novel nanostructured metal sulfides has been well established,further size-controllable optimization is still valuable to enhance their performance for various applications.Herein,a self-template method to size-controllably synthesize the hollow NiCo2S4 nanospheres is reported.Uniformly monodisperse Ni Co precursors with diameter widely ranging from 97 to 550 nm are controllably synthesized and subsequently transformed into hollow NiCo2S4 nanospheres through in situ sulfidation.Smaller nanoparticles’diameter results in the hollow NiCo2S4 nanospheres larger surface area and thinner shell thickness and hence provides much more electrochemical active sites as well as facilitate the ion and electron transfer.Consequently,the hollow NiCo2S4 nanospheres—used as the electrode materials in supercapacitors—achieve 19%enhancement of specific capacity from 484.8 to 575.1 C g-1 through lowering the 42.5%diameter of hollow NiCo2S4 nanospheres from 407 to 234 nm.Moreover,the hollow NiCo2S4 nanospheres with 234 nm diameter exhibit superior rate capacity indicated by 49%capacity retention from 1 to 50 A g-1 and excellent cycling stability(77%after 2000 cycles).Furthermore,this method is a potentially general strategy in the size-controllable synthesis of the metal sulfides hollow nanostructures and results in the remarkable electrochemical applications. 展开更多
关键词 nickel-cobalt sulfides self-template method size-controllable SUPERCAPACITOR
下载PDF
Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries 被引量:2
12
作者 Yan-Ping Liu Chen-Xi Xu +7 位作者 Wen-Qing Ren Li-Ying Hu Wen-Bin Fu Wei Wang Hong Yin Bin-Hong He Zhao-Hui Hou Liang Chen 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期929-939,共11页
The exploration of low-cost and high-performance transition metal oxides/carbon(TMOs/C)-based anodes to replace commercial graphite is still a huge challenge for the development of lithium-ion batteries(LIBs).In this ... The exploration of low-cost and high-performance transition metal oxides/carbon(TMOs/C)-based anodes to replace commercial graphite is still a huge challenge for the development of lithium-ion batteries(LIBs).In this work,MnO@N-doped hollow carbon nanotubes(MnO@NHCNT-v,v refers to the adding volume of pyrrole)hybrids are successfully prepared by a facile selftemplate strategy using Mn3O4 nanotubes(Mn3O4 NT)and pyrrole(PY)as the precursors.The morphology,structure and composition of these MnO@NHCNT-v samples are systematically investigated.And the effect of PY adding amounts on the synthesis of MnO@NHCNT-v samples is also explored.The results show that the Mn_(3)O_(4) NT works as a self-template,which releases Mn3+and guides the growth of polypyrrole(PPY)on Mn_(3)O_(4) NT.Meanwhile,it is demonstrated that the synthesis of MnO@NHCNTv hybrids can be well regulated by the added PY amounts.As a result,MnO@NHCNT-1 hybrid not only makes a good balance on the proportion of MnO and carbon matrix but also simultaneously obtains unique peapod-like structure and successful N doping in NHCNT,resulting in good electrical contact between the two components,enhanced chemical binding by Mn-N-C bonds and enough void space inside its microstructure.Benefitting from these merits,the resulting MnO@NHCNT-1 hybrid exhibits outstanding cycling stability and rate capability when used as a LIBs anode.Our work offers a good guidance on the design and preparation of low-price and high-performance TMOs/C-based LIBs anodes. 展开更多
关键词 self-template strategy Peapod-like structure N doping MnO@N-doped hollow carbon nanotubes(MnO@NHCNT) Lithium storage performance
原文传递
Self-templating synthesis of Pd_(4)S hollow nanospheres as electrocatalysts for oxygen reduction reaction 被引量:1
13
作者 Qian Wang Donghui Zhao +3 位作者 Jialong Yu Lijie Shi Yawen Wang Hongyu Chen 《Nano Research》 SCIE EI CSCD 2023年第2期2597-2603,共7页
Hollow nanostructures with structural advantages have been widely exploited as catalysts in electrochemical reactions.However,there are only limited strategies for constructing hollow Pd-based nanostructures.In this w... Hollow nanostructures with structural advantages have been widely exploited as catalysts in electrochemical reactions.However,there are only limited strategies for constructing hollow Pd-based nanostructures.In this work,Pd4S hollow nanospheres(Pd4S HNSs)are synthesized with a facile wet-chemical method via a self-templating process.Intermediate Pd-L-cysteine solid nanospheres(SNSs)were firstly obtained by the coordination of L-cysteine with Pd^(2+),and then in situ converted to hollow nanospheres in the following reduction process.The formation mechanism of the Pd4S HNSs was studied,and the size of the Pd4S HNSs can be readily adjusted by tuning the size of the SNSs.The hollow morphology would help the exposure of active sites and the prevention of aggregation during the catalytic reactions.As a result,the Pd4S HNSs exhibit improved catalytic performances in the oxygen reduction reactions,with a half-wave potential of 0.913 V vs.reversible hydrogen electrode(RHE)and impressive stability in the accelerated durability test. 展开更多
关键词 Pd4S hollow nanospheres self-templating ELECTROCATALYSIS oxygen reduction reaction
原文传递
3D-honeycomb carbons for high performance electrical double layer capacitors electrodes
14
作者 qiao zhijun ruan dianbo +2 位作者 yuan jun fu guansheng yang bin 《储能科学与技术》 CAS 2016年第4期527-531,共5页
Sodium fulvic acid based hierarchical porous carbons(SFA-HPCs) with a specific surface area of 1919 m^2·g^(–1) and total volume of 1.7 cm^3·g^(–1) has been synthesized by a simple self-template method. The... Sodium fulvic acid based hierarchical porous carbons(SFA-HPCs) with a specific surface area of 1919 m^2·g^(–1) and total volume of 1.7 cm^3·g^(–1) has been synthesized by a simple self-template method. The carbon skeleton can be formatted by the decomposition process of sodium fulvic acid(SFA) in a N_2 atmosphere. The sodium compund in SFA is used as a self-template to create the hierarchical porous structure. The unique hierarchical structure of SFA-HPCs provides an efficient pathway for electrolyte ions to be diffused into the internal surfaces of bulk electrode particles. It results in a high charge storage capacitance of 186 F·g^(–1) at current load of 40 A·g^(–1). The capacitance of 230 F·g^(–1) at 0.05 A·g^(–1) and 186 F·g^(–1) at 40 A·g^(–1) show its good rate capability. Besides, it also achieves desirable cycling stability, 99.4% capacitance remained after 10000 cycles at 40 A·g^(–1). 展开更多
关键词 sodium fulvic acid hierarchical porous carbons self-template method high rate capability
下载PDF
Self-templating construction of hollow microspheres assembled by nanosheets with exposed active planes for sodium ion storage
15
作者 Jianing Liang Zhizhan Li +3 位作者 Jinguo Cheng Jinlei Qin Hongfang Liu Deli Wang 《Nano Research》 SCIE EI CSCD 2023年第4期4987-4995,共9页
P2-type layered metal oxides have been considered as one of the promising cathode candidates for high-performance Na-ion batteries(SIBs).However,it is still challenging to balance the contradiction of high energy dens... P2-type layered metal oxides have been considered as one of the promising cathode candidates for high-performance Na-ion batteries(SIBs).However,it is still challenging to balance the contradiction of high energy density and long cycle life due to the structural degradation and sluggish ion diffusion dynamics.Here,the hierarchical P2-Na2/3Ni1/3Mn2/3O2 hollow microspheres assembled by nanosheets are constructed via a self-template approach.The obtained nanosheets with more exposed electrochemical active planes serving as desodiation/sodiation reactors can provide substantial Na+channels,shorten the diffusion pathways,and accommodate the volume changes during charge/discharge process.Benefiting from the facile Na+diffusion paths and optimal architecture modulation,the cathode delivers a high initial Coulombic efficiency of 96.0%with a high energy density of 299.7 Wh·kg^(−1).The highly reversible structural evolutions processes are verified by galvanostatic intermittent titration technique(GITT)and operando electrochemical impedance spectroscopy(EIS)measurement,which would significantly improve the cycle stability(83.3%capacity retention at 1.0 C over 500 loops).Furthermore,the full cell assembled by hard carbon presents a high reversible capacity of 71 mAh·g^(−1)at 0.2 C and promising capacity retention(91.5%after 50 cycles).The designing concept of morphological configuration in this work paves an accessible route for building high-performance electrode materials. 展开更多
关键词 sodium-ion batteries P2-type cathode hollow microspheres self-template nanosheets structure
原文传递
Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance 被引量:2
16
作者 Xupo Liu Shaofeng Deng +6 位作者 Peifang Liu Jianing Liang Mingxing Gong Chenglong Lai Yun Lu Tonghui Zhao Deli Wang 《Science Bulletin》 SCIE EI CAS CSCD 2019年第22期1675-1684,共10页
Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treat... Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical Ni Co P hollow nanoflowers with ultrathin nanosheet assembly.The microstructure of Ni Co P can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect.Benefitting from the promoted exposure of active sites and affluent mass diffusion routes,the HER performance of the Ni Co P hollow nanoflowers has been obviously enhanced in contrast with the solid Ni Co P nanospheres.The fabricated Ni Co P hollow nanoflowers yield the current density of 10 m A cmà2at small overpotentials of 95 and 127 m V in 0.5 mol Là1H2SO4and 1.0 mol Là1KOH solution,respectively.Moreover,the two-electrode alkaline cell assembled with the Ni Co P and Ir/C catalysts exhibits sustainable stability for overall water splitting.The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides,which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides. 展开更多
关键词 self-template method Hydrolysis of glycerate NANOSPHERES Kirkendall effect NiCoP HOLLOW NANOFLOWERS Hydrogen evolution reaction
原文传递
In-situ self-templating synthesis of 3D hierarchical porous carbonsfrom oxygen-bridged porous organic polymers for highperformance supercapacitors 被引量:1
17
作者 Qi Xiong Bei Liu +5 位作者 Yijiang Liu Pu Wang Hua Cheng Huaming Li Zhouguang Lu Mei Yang 《Nano Research》 SCIE EI CSCD 2022年第9期7759-7768,共10页
It is a big challenge to well control the porous structure of carbon materials for supercapacitor application.Herein,a simple in-situ self-templating strategy is developed to prepare three-dimensional(3D)hierarchical ... It is a big challenge to well control the porous structure of carbon materials for supercapacitor application.Herein,a simple in-situ self-templating strategy is developed to prepare three-dimensional(3D)hierarchical porous carbons with good combination of micro and meso-porous architecture derived from a new oxygen-bridged porous organic polymer(OPOP).The OPOP is produced by the condensation polymerization of cyanuric chloride and hydroquinone in NaOH ethanol solution and NaCl is in-situ formed as by-product that will serve as template to construct an interconnected 3D hierarchical porous architecture upon carbonization.The large interface pore architecture,and rich doping of N and O heteroatoms effectively promote the electrolyte accessibility and electronic conductivity,and provide abundant active sites for energy storage.Consequently,the supercapacitors based on the optimized OPOP-800 sample display an energy density of 8.44 and 27.28 Wh·kg^(−1)in 6.0 M KOH and 1.0 M Na2SO4 electrolytes,respectively.The capacitance retention is more than 94%after 10,000 cycles.Furthermore,density functional theory(DFT)calculations have been employed to unveil the charge storage mechanism in the OPOP-800.The results presented in this job are inspiring in finely tuning the porous structure to optimize the supercapacitive performance of carbon materials. 展开更多
关键词 in-situ self-templating porous organic polymer three-dimensional(3D)hierarchical porous carbons SUPERCAPACITORS
原文传递
Self-standing hollow porous Co/a-WO_(x)nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction 被引量:2
18
作者 Jianpo Chen Jianping Zheng +4 位作者 Weidong He Haikuan Liang Yan Li Hao Cui Chengxin Wang 《Nano Research》 SCIE EI CSCD 2023年第4期4603-4611,共9页
The sufficient utilization of Mott-Schottky effect for boosting alkaline hydrogen evolution reaction(HER)depends upon scale minimizing of interface components and exposure maximizing of Mott-Schottky interface.Here,a ... The sufficient utilization of Mott-Schottky effect for boosting alkaline hydrogen evolution reaction(HER)depends upon scale minimizing of interface components and exposure maximizing of Mott-Schottky interface.Here,a self-standing porous tubular Mott-Schottky electrocatalyst is constructed by a self-template etching strategy,where amorphous WO_(x)(a-WO_(x))nano-matrix connects Co nanoparticles.This novel“Janus”electrocatalyst maximizes the Mott-Schottky effect by not only providing a highly exposed micro interface,but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process.Experimental findings and theoretical calculations reveal that Co/a-WO_(x)Mott-Schottky heterointerface triggers the electron redistribution and a build-in electric field,which can not only optimize the adsorption energy of the reaction intermediates,but also facilitate the charge transfer.Thus,Co/a-WO_(x)requires an overpotential of only 36.3 mV at 10 mA·cm^(−2)and shows a small Tafel slope of 53.9 mV·dec^(−1)as well as an excellent 200-h long-term stability.This work provides a novel design strategy for maximizing the Mott-Schottky effect on promoting alkaline HER. 展开更多
关键词 Mott-Schottky effect ELECTROCATALYST self-template etching hydrogen evolution reaction(HER) electron redistribution
原文传递
Molten salt assisted self-activated carbon with controllable architecture for aqueous supercapacitor 被引量:1
19
作者 Wei Zhang Wenxian Li Sean Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期107-117,共11页
Activated carbons have been widely employed as electrode materials of aqueous supercapacitors but the use of hazardous and corrosive activating agents challenges conventional activation procedures.Here,using a unique ... Activated carbons have been widely employed as electrode materials of aqueous supercapacitors but the use of hazardous and corrosive activating agents challenges conventional activation procedures.Here,using a unique molten salt assisted self-activation technique,we have devised an eco-friendly and simple method to synthesize oxygen-rich hierarchical porous carbon with controllable architecture.Mixture of sodium carboxymethylcellulose and NaCl was pyrolyzed in one step,creating in-situ produced Na_(2)CO_(3)-NaCl molten salt that carried out the activation work.Na2 CO3 acts as the activating agent in the reaction media of NaCl during the self-activation process.The obtained carbon exhibited a remarkable specific capacitance of 278 F g^(−1) at 0.5 A g^(−1) and retained 76%capacitance at 50 A g^(−1) in a three-electrode cell.The fabricated aqueous coin cell achieved 81%capacitance retention at 50 A g^(−1) and the highest specific energy density of 12.8 Wh kg^(−1) at 214.6 W kg^(−1),which are superior compared to the commercial activated carbon(64%at 50 A g^(−1) and 8.4 Wh kg^(−1) at 194.8 W kg^(−1)).Moreover,capacitance fading was not observed after 10000 cycles at 5 A g^(−1).Considering the species diversity and low cost of self-salt polymers on the market,this strategy will expect to become a scalable approach for synthesizing high-performance capacitive carbons. 展开更多
关键词 Molten salt self-template Porous carbon Controllable architecture Aqueous supercapacitors
原文传递
Metal-polyphenol-network coated CaCO_(3)as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments 被引量:1
20
作者 Ziliang Dong Yu Hao +4 位作者 Quguang Li Zhijuan Yang Yujie Zhu Zhuang Liu Liangzhu Feng 《Nano Research》 SCIE EI CAS CSCD 2020年第11期3057-3067,共11页
Construction of multifunctional stimuli-responsive nanotherapeutics enabling improved intratumoral penetration of therapeutics and reversal of multiple-drug resistance(MDR)is potent to achieve effective cancer treatme... Construction of multifunctional stimuli-responsive nanotherapeutics enabling improved intratumoral penetration of therapeutics and reversal of multiple-drug resistance(MDR)is potent to achieve effective cancer treatment.Herein,we report a general method to synthesize pH-dissociable calcium carbonate(CaCO_(3))hollow nanoparticles with amorphous CaCO_(3)as the template,gallic acid(GA)as the organic ligand,and ferrous ions as the metallic center via a one-pot coordination reaction.The obtained GA–Fe@CaCO_(3)exhibits high loading efficiencies to both oxidized cisplatin prodrug and doxorubicin,yielding drug loaded GA-Fe@CaCO_(3)nanotherapeutics featured in pH-responsive size shrinkage,drug release,and Fenton catalytic activity.Compared to nonresponsive GA-Fe@silica nanoparticles prepared with silica nanoparticles as the template,such GA-Fe@CaCO_(3)confers significantly improved intratumoral penetration capacity.Moreover,both types of drug-loaded GA–Fe@CaCO_(3)nanotherapeutics exhibit synergistic therapeutic efficacies to corresponding MDR cancer cells because of the GA–Fe mediated intracellular oxidative stress amplification that could reduce the efflux of engulfed drugs by impairing the mitochondrial-mediated production of adenosine triphosphate(ATP).As a result,it is found that the doxorubicin loaded GA-Fe@CaCO_(3)exhibits superior therapeutic effect towards doxorubicin-resistant 4T1 breast tumors via combined chemodynamic and chemo-therapies.This work highlights the preparation of pH-dissociable CaCO_(3)-based nanotherapeutics to enable effective tumor penetration for enhanced treatment of drug-resistant tumors. 展开更多
关键词 self-templated synthesis gallic acid(GA)–Fe@calcium carbonate(CaCO_(3))hollow nanoparticles reactive oxygen species(ROS)generation and chemodynamic therapy improved intratumoral penetration reversal of multi-drug resistance
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部