A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous lin...This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.展开更多
A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optim...A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optimization design of 2DOF PID regulator.The simulated results show that very good dynamic response performance of both command tracking and disturbance rejection characteristics can be achieved simultaneously.At the same time,the comparisons of simulation results with the improved GA,the basic GEO and the improved GEO were given.From the comparisons,it is shown that the improved GEO algorithm is competitive in performance with the GA and basic GEO and is an attractive tool to be used in the design of two-degree-of-freedom PID regulator.展开更多
Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural n...Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.展开更多
This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption t...This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption that a PID controller has additive gain perturbations.An H-infinite robust PID controller can be obtained by solving a linear matrix inequality.This approach can guarantee that the closed-loop control systems is asymptotically stable and the H-infinite norm of the transfer function from the disturbance to the output of a controlled system is less than a given constant to attenuate disturbances.The simulation case shows that the control performance of the proposed strategy is significantly better than the traditional PID approach in the situation with perturbations of controller parameters.展开更多
Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindere...Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindered the development of Chinese agriculture and the pace of new countryside construction. This paper introduced a kind of structure and basic principle of DSP-based automatic excitation regulator, which was applied to rural small generator. We chose TMS320LF2407A chip as the core of regulator control system; the regulator adjusted PWM based on PID control strategy to control the exciting current. The theoretical analysis showed that the regulator had the characteristics of simplicity and reliability, well dynamic and static characteristics, and it could also adjust its own state quickly. The result was applicable to small rural hydropower station.展开更多
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
文摘This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.
基金The National High Technology Research and Development Program of China(863Program)(No.2003AA517020)
文摘A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optimization design of 2DOF PID regulator.The simulated results show that very good dynamic response performance of both command tracking and disturbance rejection characteristics can be achieved simultaneously.At the same time,the comparisons of simulation results with the improved GA,the basic GEO and the improved GEO were given.From the comparisons,it is shown that the improved GEO algorithm is competitive in performance with the GA and basic GEO and is an attractive tool to be used in the design of two-degree-of-freedom PID regulator.
文摘Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.
基金Supported by the National Natural Science Foundation of China(60604015) the Key Research Program of Education Department of Zhejiang Province(Z200803521)
文摘This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption that a PID controller has additive gain perturbations.An H-infinite robust PID controller can be obtained by solving a linear matrix inequality.This approach can guarantee that the closed-loop control systems is asymptotically stable and the H-infinite norm of the transfer function from the disturbance to the output of a controlled system is less than a given constant to attenuate disturbances.The simulation case shows that the control performance of the proposed strategy is significantly better than the traditional PID approach in the situation with perturbations of controller parameters.
文摘Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindered the development of Chinese agriculture and the pace of new countryside construction. This paper introduced a kind of structure and basic principle of DSP-based automatic excitation regulator, which was applied to rural small generator. We chose TMS320LF2407A chip as the core of regulator control system; the regulator adjusted PWM based on PID control strategy to control the exciting current. The theoretical analysis showed that the regulator had the characteristics of simplicity and reliability, well dynamic and static characteristics, and it could also adjust its own state quickly. The result was applicable to small rural hydropower station.