Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ...We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.展开更多
The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into loca...The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.展开更多
针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式...针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。展开更多
The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide.Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridizati...The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide.Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping.However,the pervasive clonal lineages of M.oryzae observed in natural fields contradict this expectation.A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation(RIP)in shaping its evolutionary trajectory is essential to bridge this knowledge gap.Here we systematically investigate the RIP and recombination landscapes in M.oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies.Our data reveal that the RIP can robustly capture the population history of M.oryzae,and we provide accurate estimations of the recombination and RIP rates across different M.oryzae clades.Significantly,our results highlight a parent-of-origin bias in both recombination and RIP rates,tightly associating with their sexual potential and variations of effector proteins.This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution.These findings provide unique insights into understanding the evolution of blast fungus.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding thiswork through Research Group No.RG-21-09-17.
文摘We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.
文摘The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.
文摘针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。
基金funded by the National Natural Science Foundation of China(32270664 and 32170327)the National Key Research and Development Program of China(2023YFD2200102 and 2023YFD2200104)Jiangsu Collaborative Innovation Center for Modern Crop Production。
文摘The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide.Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping.However,the pervasive clonal lineages of M.oryzae observed in natural fields contradict this expectation.A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation(RIP)in shaping its evolutionary trajectory is essential to bridge this knowledge gap.Here we systematically investigate the RIP and recombination landscapes in M.oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies.Our data reveal that the RIP can robustly capture the population history of M.oryzae,and we provide accurate estimations of the recombination and RIP rates across different M.oryzae clades.Significantly,our results highlight a parent-of-origin bias in both recombination and RIP rates,tightly associating with their sexual potential and variations of effector proteins.This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution.These findings provide unique insights into understanding the evolution of blast fungus.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.