Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
In the classical theory of self-tuning regulators, it always requires that the conditional variances of the systems noises are bounded. However, such a requirement may not be satisfied when modeling many practical sys...In the classical theory of self-tuning regulators, it always requires that the conditional variances of the systems noises are bounded. However, such a requirement may not be satisfied when modeling many practical systems, and one significant example is the well-known ARCH(autoregressive conditional heteroscedasticity) model in econometrics. The aim of this paper is to consider self-tuning regulators of linear stochastic systems with both unknown parameters and conditional heteroscedastic noises, where the adaptive controller will be designed based on both the weighted least-squares algorithm and the certainty equivalence principle. The authors will show that under some natural conditions on the system structure and the noises with unbounded conditional variances, the closed-loop adaptive control system will be globally stable and the tracking error will be asymptotically optimal.Thus, this paper provides a significant extension of the classical theory on self-tuning regulators with expanded applicability.展开更多
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金supported by the National Natural Science Foundation of China under Grant No.11688101。
文摘In the classical theory of self-tuning regulators, it always requires that the conditional variances of the systems noises are bounded. However, such a requirement may not be satisfied when modeling many practical systems, and one significant example is the well-known ARCH(autoregressive conditional heteroscedasticity) model in econometrics. The aim of this paper is to consider self-tuning regulators of linear stochastic systems with both unknown parameters and conditional heteroscedastic noises, where the adaptive controller will be designed based on both the weighted least-squares algorithm and the certainty equivalence principle. The authors will show that under some natural conditions on the system structure and the noises with unbounded conditional variances, the closed-loop adaptive control system will be globally stable and the tracking error will be asymptotically optimal.Thus, this paper provides a significant extension of the classical theory on self-tuning regulators with expanded applicability.