期刊文献+
共找到31,781篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
1
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
A Survey on Type-3 Fuzzy Logic Systems and Their Control Applications
2
作者 Oscar Castillo Fevrier Valdez +1 位作者 Patricia Melin Weiping Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1744-1756,共13页
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz... In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc. 展开更多
关键词 Applications control systems optimization REVIEW type-3 fuzzy logic.
下载PDF
Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes
3
作者 Yong Xu Xuewei Zhang +4 位作者 Wenlong Xie Shihong Zhang Xinyue Huang Yaqiang Tian Liansheng Chen 《Computers, Materials & Continua》 SCIE EI 2024年第11期2753-2768,共16页
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o... The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates. 展开更多
关键词 Variable diameter tubes finite element simulation HYDROFORMING fuzzy control
下载PDF
A Stable Fuzzy-Based Computational Model and Control for Inductions Motors
4
作者 Yongqiu Liu Shaohui Zhong +3 位作者 Nasreen Kausar Chunwei Zhang Ardashir Mohammadzadeh Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期793-812,共20页
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se... In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997. 展开更多
关键词 Sliding mode control self-tuning type-2 fuzzy systems inductions motor parameters uncertainty
下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
5
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 Adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
下载PDF
Fuzzy Proportional Integral Derivative control of a voice coil actuator system for adaptive deformable mirrors
6
作者 Ziqiang Cui Heng Zuo +4 位作者 Weikang Qiao Hao Li Fujia Du Yifan Wang Jinrui Guo 《Astronomical Techniques and Instruments》 CSCD 2024年第3期179-186,共8页
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number... Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system. 展开更多
关键词 Adaptive optics Deformable mirror Voice coil actuator fuzzy control
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
7
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
8
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
9
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 Hybrid Electric Vehicle fuzzy Logic Adaptive control Charge Sustainability
下载PDF
Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits
10
作者 Tiezhou Wu Yukan Zhang 《Energy Engineering》 EI 2024年第8期2231-2255,共25页
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi... In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme. 展开更多
关键词 Lithium-ion battery for new energy vehicles lithium-ion battery equilibrium fuzzy logic control
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
11
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
12
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction Motor Vector control fuzzy Logic control Sliding Mode
下载PDF
A fuzzy control and neural network based rotor speed controller for maximum power point tracking in permanent magnet synchronous wind power generation system 被引量:1
13
作者 Min Ding Zili Tao +3 位作者 Bo Hu Meng Ye Yingxiong Ou Ryuichi Yokoyama 《Global Energy Interconnection》 EI CSCD 2023年第5期554-566,共13页
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer... When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation. 展开更多
关键词 Maximum wind power tracking fuzzy control Neural network
下载PDF
Power-Sharing Enhancement Using Harmonized Membership Fuzzy Logic Droop Control Based Micro-Grid 被引量:1
14
作者 W.J.Praiselin J.Belwin Edward 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1395-1415,共21页
The contribution of Renewable Energy Resources(RER)in the process of power generation is significantly high in the recent days since it paves the way for overcoming the issues like serious energy crisis and natural con... The contribution of Renewable Energy Resources(RER)in the process of power generation is significantly high in the recent days since it paves the way for overcoming the issues like serious energy crisis and natural contamination.This paper deals with the renewable energy based micro-grid as it is regarded as the apt solution for integrating the RER with the electrical frameworks.As thefixed droop coefficients in conventional droop control approaches have caused various limitations like low power-sharing and sudden drops of grid voltage in the Direct Current(DC)side,the Harmonized Membership Fuzzy Logic(MFL)droop control is employed in this present study.This proposed droop control for the hybrid PV-wind-battery system with MFL assists in achieving proper power-sharing and minimizing Total Harmonic Distortion(THD)in the emer-gency micro-grid.It eradicates the deviations in voltage and frequency with itsflexible and robust operation.The THD is reduced and attains the value of 3.1%compared to the traditional droop control.The simulation results of harmo-nized MFL droop control are analogized with the conventional approaches to vali-date the performance of the proposed method.In addition,the experimental results provided by the Field Programmable Gate Array(FPGA)based laboratory setup built using a solar photovoltaic(PV)and wind Permanent Magnet Synchro-nous Generator(PMSG)reaffirms the design. 展开更多
关键词 MICRO-GRID harmonized droop control fuzzy POWER-SHARING total harmonic distortion
下载PDF
Proportion Integration Differentiation(PID)Control Strategy of Belt Sander Based on Fuzzy Algorithm 被引量:1
15
作者 陈坤 张亚伟 +1 位作者 张振 桂志伟 《Journal of Donghua University(English Edition)》 CAS 2023年第2期177-184,共8页
Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion ... Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified. 展开更多
关键词 grinding mechanism constant force control strategy fuzzy control proportion integration differentiation(PID)
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
16
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 Battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Novel ARC-Fuzzy Coordinated Automatic Tracking Control of Four-Wheeled Mobile Robot
17
作者 G.Pandiaraj S.Muralidharan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3713-3726,共14页
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d... Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches. 展开更多
关键词 Adaptive robust control coordinated control mobile robot fuzzy adaptation law fuzzy parameter adjustment direct torque allocation
下载PDF
Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances
18
作者 王千龄 马彩青 林雪 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期383-391,共9页
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau... The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results. 展开更多
关键词 fault-tolerant control high-speed trains disturbance observer fuzzy logic
下载PDF
Temperature Control Design with Differential Evolution Based Improved Adaptive-Fuzzy-PID Techniques
19
作者 Prabhu Kaliappan Aravindguru Illango +1 位作者 Sivachitra Muthusamy Banumathi Sembanan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期781-801,共21页
This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plan... This paper presents the design and performance analysis of Differential Evolution(DE)algorithm based Proportional-Integral-Derivative(PID)controller for temperature control of Continuous Stirred Tank Reactor(CSTR)plant in che-mical industries.The proposed work deals about the design of Differential Evolu-tion(DE)algorithm in order to improve the performance of CSTR.In this,the process is controlled by controlling the temperature of the liquid through manip-ulation of the coolantflow rate with the help of modified Model Reference Adap-tive Controller(MRAC).The transient response of temperature process is improved by using PID Controller,Differential Evolution Algorithm based PID and fuzzy based DE controller.Finally,the temperature response is compared with experimental results of CSTR. 展开更多
关键词 CSTR PID controller MRAC DE fuzzy MIT rule
下载PDF
Fuzzy Feedback Control for Electro-Hydraulic Actuators
20
作者 Tan Nguyen Van Huy Q.Tran +2 位作者 Vinh Xuan Ha Cheolkeun Ha Phu Huynh Minh 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2441-2456,共16页
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co... Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively. 展开更多
关键词 Electro-hydraulic actuator fuzzy PID feedback control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部