期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Towards POI-based large-scale land use modeling: spatial scale, semantic granularity, and geographic context
1
作者 Junchuan Fan Gautam Thakur 《International Journal of Digital Earth》 SCIE EI 2023年第1期430-445,共16页
The combination of spatial distribution,semantic characteristics,and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics.Most previous studies on POI-based la... The combination of spatial distribution,semantic characteristics,and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics.Most previous studies on POI-based land use modeling research focused on one geographic region and select one spatial scale and semantic granularity for land use characterization.There is a lack of understanding on the impact of spatial scale,semantic granularity,and geographic context on POI-based land use modeling,particularly large-scale land use modeling.In this study,we developed a scalable POI-based land use modeling framework and examined the impact of these three factors on POI-based land use characterization using data from three geographic regions.We developed a unified semantic representation framework for POI semantics that can help fuse heterogeneous POI data sources.Then,by combining POIs with a neural network language model,we developed a spatially explicit approach to learn the embedding representation of POIs and AOIs.We trained multiple supervised classifiers using AOI embeddings as input features to predict AOI land use at different semantic granularities.The classification performance of different land use classes was analyzed and compared across three geographic regions to identify the semantic representativeness of POI-based AOI embedding and the impact of geographic context. 展开更多
关键词 Land use POI geospatial semantic deep learning semantic granularity spatial scale
原文传递
Learning a hierarchical image manifold for Web image classification
2
作者 Rong ZHU Min YAO +1 位作者 Li-hua YE Jun-ying XUAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第10期719-735,共17页
Image classification is an essential task in content-based image retrieval.However,due to the semantic gap between low-level visual features and high-level semantic concepts,and the diversification of Web images,the p... Image classification is an essential task in content-based image retrieval.However,due to the semantic gap between low-level visual features and high-level semantic concepts,and the diversification of Web images,the performance of traditional classification approaches is far from users' expectations.In an attempt to reduce the semantic gap and satisfy the urgent requirements for dimensionality reduction,high-quality retrieval results,and batch-based processing,we propose a hierarchical image manifold with novel distance measures for calculation.Assuming that the images in an image set describe the same or similar object but have various scenes,we formulate two kinds of manifolds,object manifold and scene manifold,at different levels of semantic granularity.Object manifold is developed for object-level classification using an algorithm named extended locally linear embedding(ELLE) based on intra-and inter-object difference measures.Scene manifold is built for scene-level classification using an algorithm named locally linear submanifold extraction(LLSE) by combining linear perturbation and region growing.Experimental results show that our method is effective in improving the performance of classifying Web images. 展开更多
关键词 Web image classification Manifold learning Image manifold semantic granularity Distance measure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部