With the proliferation of the internet,big data continues to grow exponentially,and video has become the largest source.Video big data intro-duces many technological challenges,including compression,storage,trans-miss...With the proliferation of the internet,big data continues to grow exponentially,and video has become the largest source.Video big data intro-duces many technological challenges,including compression,storage,trans-mission,analysis,and recognition.The increase in the number of multimedia resources has brought an urgent need to develop intelligent methods to organize and process them.The integration between Semantic link Networks and multimedia resources provides a new prospect for organizing them with their semantics.The tags and surrounding texts of multimedia resources are used to measure their semantic association.Two evaluation methods including clustering and retrieval are performed to measure the semantic relatedness between images accurately and robustly.A Fuzzy Rule-Based Model for Semantic Content Extraction is designed which performs classification with fuzzy rules.The features extracted are trained with the neural network where each network contains several layers among them each layer of neurons is dedicated to measuring the weight towards different semantic events.Each neuron measures its weight according to different features like shape,size,direction,speed,and other features.The object is identified by subtracting the background features and trained to detect based on the features like size,shape,and direction.The weight measurement is performed according to the fuzzy rules and based on the weight measures.These frameworks enhance the video analytics feature and help in video surveillance systems with better accuracy and precision.展开更多
基金funded in part by Major projects of the National Social Science Fund(16ZDA054)of Chinathe Postgraduate Research&Practice Innovation Program of Jiansu Province(NO.KYCX18_0999)of Chinathe Engineering Research Center for Software Testing and Evaluation of Fujian Province(ST2018004)of China.
文摘With the proliferation of the internet,big data continues to grow exponentially,and video has become the largest source.Video big data intro-duces many technological challenges,including compression,storage,trans-mission,analysis,and recognition.The increase in the number of multimedia resources has brought an urgent need to develop intelligent methods to organize and process them.The integration between Semantic link Networks and multimedia resources provides a new prospect for organizing them with their semantics.The tags and surrounding texts of multimedia resources are used to measure their semantic association.Two evaluation methods including clustering and retrieval are performed to measure the semantic relatedness between images accurately and robustly.A Fuzzy Rule-Based Model for Semantic Content Extraction is designed which performs classification with fuzzy rules.The features extracted are trained with the neural network where each network contains several layers among them each layer of neurons is dedicated to measuring the weight towards different semantic events.Each neuron measures its weight according to different features like shape,size,direction,speed,and other features.The object is identified by subtracting the background features and trained to detect based on the features like size,shape,and direction.The weight measurement is performed according to the fuzzy rules and based on the weight measures.These frameworks enhance the video analytics feature and help in video surveillance systems with better accuracy and precision.