Remarkable progress in research has shown the efficiency of Knowledge Graphs(KGs)in extracting valuable external knowledge in various domains.A Knowledge Graph(KG)can illustrate high-order relations that connect two o...Remarkable progress in research has shown the efficiency of Knowledge Graphs(KGs)in extracting valuable external knowledge in various domains.A Knowledge Graph(KG)can illustrate high-order relations that connect two objects with one or multiple related attributes.The emerging Graph Neural Networks(GNN)can extract both object characteristics and relations from KGs.This paper presents how Machine Learning(ML)meets the Semantic Web and how KGs are related to Neural Networks and Deep Learning.The paper also highlights important aspects of this area of research,discussing open issues such as the bias hidden in KGs at different levels of graph representation。展开更多
This paper presents a dynamic knowledge graph approach that offers a reusable,interoperable,and extensible framework for modelling power systems.Domain ontologies have been developed to support a linked data represent...This paper presents a dynamic knowledge graph approach that offers a reusable,interoperable,and extensible framework for modelling power systems.Domain ontologies have been developed to support a linked data representation of infrastructure data,socio-demographic data,areal attributes like demand,and models describing power systems.The knowledge graph links the data with a hierarchical representation of administrative regions,supporting geospatial queries to retrieve information about the population within the vicinity of a power plant,the number of power plants,total generation capacity,and demand within specific areas.Computational agents were developed to operate on the knowledge graph.The agents performed tasks including data uploading,updating,retrieval,processing,model construction and scenario analysis.A derived information framework was used to track the provenance of information calculated by agents involved in each scenario.The knowledge graph was populated with data describing the UK power system.Two alternative models of the transmission grid with different levels of structural resolution were instantiated,providing the foundation for the power system simulation and optimisation tasks performed by the agents.The application of the dynamic knowledge graph was demonstrated via a case study that investigates clean energy transition trajectories based on the deployment of Small Modular Reactors in the UK.展开更多
文摘Remarkable progress in research has shown the efficiency of Knowledge Graphs(KGs)in extracting valuable external knowledge in various domains.A Knowledge Graph(KG)can illustrate high-order relations that connect two objects with one or multiple related attributes.The emerging Graph Neural Networks(GNN)can extract both object characteristics and relations from KGs.This paper presents how Machine Learning(ML)meets the Semantic Web and how KGs are related to Neural Networks and Deep Learning.The paper also highlights important aspects of this area of research,discussing open issues such as the bias hidden in KGs at different levels of graph representation。
基金supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)programme.Part of this work was also supported by Towards Turing 2.0 under the EPSRC Grant EP/W037211/1.
文摘This paper presents a dynamic knowledge graph approach that offers a reusable,interoperable,and extensible framework for modelling power systems.Domain ontologies have been developed to support a linked data representation of infrastructure data,socio-demographic data,areal attributes like demand,and models describing power systems.The knowledge graph links the data with a hierarchical representation of administrative regions,supporting geospatial queries to retrieve information about the population within the vicinity of a power plant,the number of power plants,total generation capacity,and demand within specific areas.Computational agents were developed to operate on the knowledge graph.The agents performed tasks including data uploading,updating,retrieval,processing,model construction and scenario analysis.A derived information framework was used to track the provenance of information calculated by agents involved in each scenario.The knowledge graph was populated with data describing the UK power system.Two alternative models of the transmission grid with different levels of structural resolution were instantiated,providing the foundation for the power system simulation and optimisation tasks performed by the agents.The application of the dynamic knowledge graph was demonstrated via a case study that investigates clean energy transition trajectories based on the deployment of Small Modular Reactors in the UK.