In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variab...An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.展开更多
We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing s...We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing strong and weak singularities respectively intersect transversally, then some new singularities will take place anti their strength will be no more than the original weak one.展开更多
文摘In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
基金Supported by the National Natural Science Fund(11061021)Supported by the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011, NJ10006)+1 种基金Supported by the Program of Higher-level talents of Inner Mongolia University(125119)Supported by the Scientific Research Projection of Inner Mongolia University of Finance and Economics(KY1101)
文摘An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.
文摘We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing strong and weak singularities respectively intersect transversally, then some new singularities will take place anti their strength will be no more than the original weak one.