This study investigated the rheological properties of semi-solid metal. An analytical model of apparent viscosity was built up based on analysis of energy dissipation during rheological processes such as slurry prepar...This study investigated the rheological properties of semi-solid metal. An analytical model of apparent viscosity was built up based on analysis of energy dissipation during rheological processes such as slurry preparing, delivering and model filling. The rheological properties of SSM (semi-solid metal) slurry was described by an analytical model in terms of microstructural parameters, which consist of effective solid fraction, particle size and shape, and flow parameters such as mean velocity, fluctuant velocity and relative velocity between liquid and solid phase. The model was verified in the experiment of A356 alloys with a coaxial double-bucket rheometer. And the maximum relative error between the theoretical value and measured one is less than 20%. The results of experiment and theoretical calculation also indicate that the microstructural parameters and flow parameters are two major factors that affect the apparent viscosity of semi-solid alloys, and fluctuant velocity and relative velocity between liquid and solid phase are the key factors to distinguish between steady and transient rheological properties.展开更多
The energy dissipation caused by the viscous force has great effects on the flow property of semi-solid metal during rheological processes such as slurry preparing, delivering and cavity filling. Experimental results ...The energy dissipation caused by the viscous force has great effects on the flow property of semi-solid metal during rheological processes such as slurry preparing, delivering and cavity filling. Experimental results in this paper indicate that the viscous friction between semi-solid metal and pipe wall, the collisions among the solid particles, and the liquid flow around particles are the three main types of energy dissipation. On the basis of the hydromechanics, the energy dissipation calculation model is built. It is demonstrated that the micro-structural parameters such as effective solid fraction, particle size and shape, and flow parameters such as the mean velocity, the fluctuant velocity of particles and the relative velocity between the fluid and solid phase, affect the energy dissipation of semi-solid metal.展开更多
The corrosion behavior(in chloride medium) of the surface layer of SSM-HPDC plates of alloys 7075-T6 and 2024-T6 was compared with that of the wrought alloys 7075-T6 and 2024-T6.Potentiodynamic testing was performed i...The corrosion behavior(in chloride medium) of the surface layer of SSM-HPDC plates of alloys 7075-T6 and 2024-T6 was compared with that of the wrought alloys 7075-T6 and 2024-T6.Potentiodynamic testing was performed in deaerated 3.5%NaCl solution.In separate tests,the open-circuit potential was monitored in aerated 3.5% NaCl for 30 min after immersion.The electrochemical tests show that there is no significant difference in the pitting potential of the wrought alloys and that of the Cu-enriched surfaces of the SSM-HPDC alloys.展开更多
The gas induced semi-solid(GISS) is a rheocasting process that produces semi-solid slurry by applying fine gas bubble injection through a graphite diffuser.The process is developed to be used in the die casting indust...The gas induced semi-solid(GISS) is a rheocasting process that produces semi-solid slurry by applying fine gas bubble injection through a graphite diffuser.The process is developed to be used in the die casting industry.To apply the GISS process with a die casting process,a GISS maker unit is designed and attached to a conventional die casting machine with little modifications.The commercial parts are developed and produced by the GISS die casting process.The GISS die casting shows the feasibility to produce industrial parts with aluminum 7075 and A356 with lower porosity than liquid die casting.展开更多
The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the micros...The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.展开更多
The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotati...The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198 MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.展开更多
A two-step reheating process was proposed and applied to perform reheating experiments on the semi-solid 2024 alloy billet. In this process, the semi-solid billet was firstly heated over liquidus temperature and then ...A two-step reheating process was proposed and applied to perform reheating experiments on the semi-solid 2024 alloy billet. In this process, the semi-solid billet was firstly heated over liquidus temperature and then isothermally held at solid-liquid zone temperature. Microstructure evolution of the semi-solid billet during two-step reheating was studied by optical microscope and compared with that during isothermal reheating. The results show that the remelting rate of the semi-solid billet during two-step reheating is faster than that during isothermal reheating. Under the same reheating time, the grains of the semi-solid billet reheated by two-step reheating process are finer and rounder than those by isothermal reheating process. The present experimental results indicate that accelerating the formation of liquid phase during the two-step reheating process can restrain the coalescence of grains to a certain extent, and thus refine the grain size and promote the grain spheroidization.展开更多
The microstructural evolution of the A2017 semi-solid alloy billets provided with rheocasting and extruding/extending forming by shearing-cooling-rolling(SCR) technology during reheating in semi-solid state was invest...The microstructural evolution of the A2017 semi-solid alloy billets provided with rheocasting and extruding/extending forming by shearing-cooling-rolling(SCR) technology during reheating in semi-solid state was investigated. The microstructural differences and their generation causes for both billets were also analyzed. The results show that during reheating, the grains of rheocasting billets grow up and spheroidize gradually with the prolongation of isothermal holding time, the eutectic liquid phase at low melting point forms mainly among the grains. However, the grains of the extruding/extending forming billets grow up abnormally through grain coalescence in the initial stage of the reheating, the entrapment of large amount of liquid within grains occurs, and the grain sizes in the reheating billets are coarse and inhomogeneous. Compared with extruding/extending forming billets, rheocasting billets have smaller and uniform grains in reheating microstructure and can rapidly form liquid phase among grains. Therefore, rheocasting billets are more suitable for the semi-solid forming than the extruding/extending forming billets.展开更多
In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by ...In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by a mechanical stirring semi-solid process. The appropriate processing parameters of slurry preparation were obtained, and the mold filling ability of semi-solid slurry for thin-walled casting was examined. Results indicate that the solid volume fraction of non-dendritic microstructure increases with a decrease in pouring temperature of magnesium melt and the barrel preheating temperature of the screw mixer. Also the grain size of primary α-phase is reduced. Furthermore, the solid volume fraction of semi-solid nondendritic structure decreases with an increase of shear rate. The fine and round granular microstructure with 30~50 μm in size of semi-solid AZ91D magnesium alloy was presented. Finally, a 1.0 mm thin-walled casting with a clear contour and good soundness was successfully made by semi-solid rheo-diecasting.展开更多
Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to...Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.展开更多
The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the prepa...The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the preparation of the semi-solid slurry of this alloy.The results show that the primary Si particles in this alloy is about 20 μm in size under DUV for 90 s in the semi-solid temperature range,compared to about 30 μm in the alloy without DUV.It is discovered that the primary Si particles distribute more homogeneously and have regular shape,but have lower volume fraction after DUV.The tensile strength at room temperature is about 310 MPa,and the tensile strength and elongation of the semi-solid die castings are increased by 34% and 45%,respectively,compared with the traditional liquid die castings.The high-temperature tensile strength at 300 ℃ of this high Si aluminum alloy reaches 167 MPa,and the coefficient of thermal expansion is 17.37×10-6/℃ between 25 and 300 ℃.This indicates that this high Si content Al-Si alloy produced with the DUV process is suitable to be used in the manufacture of pistons or other heat-resistant parts.展开更多
The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by first...The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by firstly measuring the chemical composition of the surface of the plates using a Thermo Quantris optical emission spectrometer(OES).Material was then removed by a grinding process followed by measurement of the amount of material removed and chemical analysis.Chemical profiles of the main alloying elements were plotted for the cross-section of the plates in the as-cast and T6(after solution treatment) temper conditions.Vickers hardness profiles from the surface to the centre of the plates were determined.Metallographic samples of cross-sections of the castings were prepared and evaluated using a scanning electron microscope.The results show that surface liquid segregation in SSM-HPDC alloys causes significant differences in properties between the surface and the bulk of these castings in both the F and T6 temper conditions.展开更多
文摘This study investigated the rheological properties of semi-solid metal. An analytical model of apparent viscosity was built up based on analysis of energy dissipation during rheological processes such as slurry preparing, delivering and model filling. The rheological properties of SSM (semi-solid metal) slurry was described by an analytical model in terms of microstructural parameters, which consist of effective solid fraction, particle size and shape, and flow parameters such as mean velocity, fluctuant velocity and relative velocity between liquid and solid phase. The model was verified in the experiment of A356 alloys with a coaxial double-bucket rheometer. And the maximum relative error between the theoretical value and measured one is less than 20%. The results of experiment and theoretical calculation also indicate that the microstructural parameters and flow parameters are two major factors that affect the apparent viscosity of semi-solid alloys, and fluctuant velocity and relative velocity between liquid and solid phase are the key factors to distinguish between steady and transient rheological properties.
文摘The energy dissipation caused by the viscous force has great effects on the flow property of semi-solid metal during rheological processes such as slurry preparing, delivering and cavity filling. Experimental results in this paper indicate that the viscous friction between semi-solid metal and pipe wall, the collisions among the solid particles, and the liquid flow around particles are the three main types of energy dissipation. On the basis of the hydromechanics, the energy dissipation calculation model is built. It is demonstrated that the micro-structural parameters such as effective solid fraction, particle size and shape, and flow parameters such as the mean velocity, the fluctuant velocity of particles and the relative velocity between the fluid and solid phase, affect the energy dissipation of semi-solid metal.
文摘The corrosion behavior(in chloride medium) of the surface layer of SSM-HPDC plates of alloys 7075-T6 and 2024-T6 was compared with that of the wrought alloys 7075-T6 and 2024-T6.Potentiodynamic testing was performed in deaerated 3.5%NaCl solution.In separate tests,the open-circuit potential was monitored in aerated 3.5% NaCl for 30 min after immersion.The electrochemical tests show that there is no significant difference in the pitting potential of the wrought alloys and that of the Cu-enriched surfaces of the SSM-HPDC alloys.
基金supports from Prince of Songkla University (No.AGR530031M)the Royal Golden Jubilee Ph.D program (No.PHD/0173/2550)
文摘The gas induced semi-solid(GISS) is a rheocasting process that produces semi-solid slurry by applying fine gas bubble injection through a graphite diffuser.The process is developed to be used in the die casting industry.To apply the GISS process with a die casting process,a GISS maker unit is designed and attached to a conventional die casting machine with little modifications.The commercial parts are developed and produced by the GISS die casting process.The GISS die casting shows the feasibility to produce industrial parts with aluminum 7075 and A356 with lower porosity than liquid die casting.
基金The authors would like to thank the National Natural Science Foundation of China and Baoshan Iron&Steel Co.of Shanghai for financial support under the grant No.50274020.
文摘The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.
基金Project(50474007) supported by the National Natural Science Foundation of ChinaProject(0450050) supported by the Natural Science Foundation of Jiangxi Province, China Projects(GanJiaoZi[2005]2, 24) supported by the Science and Technology Program of Education Department of Jiangxi Province, China
文摘The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198 MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.
基金Project(20060400749) supported by the Postdoctoral Science Foundation of ChinaProject supported by the Postdoctoral Novel Science Foundation of South China University of Technology,China
文摘A two-step reheating process was proposed and applied to perform reheating experiments on the semi-solid 2024 alloy billet. In this process, the semi-solid billet was firstly heated over liquidus temperature and then isothermally held at solid-liquid zone temperature. Microstructure evolution of the semi-solid billet during two-step reheating was studied by optical microscope and compared with that during isothermal reheating. The results show that the remelting rate of the semi-solid billet during two-step reheating is faster than that during isothermal reheating. Under the same reheating time, the grains of the semi-solid billet reheated by two-step reheating process are finer and rounder than those by isothermal reheating process. The present experimental results indicate that accelerating the formation of liquid phase during the two-step reheating process can restrain the coalescence of grains to a certain extent, and thus refine the grain size and promote the grain spheroidization.
文摘The microstructural evolution of the A2017 semi-solid alloy billets provided with rheocasting and extruding/extending forming by shearing-cooling-rolling(SCR) technology during reheating in semi-solid state was investigated. The microstructural differences and their generation causes for both billets were also analyzed. The results show that during reheating, the grains of rheocasting billets grow up and spheroidize gradually with the prolongation of isothermal holding time, the eutectic liquid phase at low melting point forms mainly among the grains. However, the grains of the extruding/extending forming billets grow up abnormally through grain coalescence in the initial stage of the reheating, the entrapment of large amount of liquid within grains occurs, and the grain sizes in the reheating billets are coarse and inhomogeneous. Compared with extruding/extending forming billets, rheocasting billets have smaller and uniform grains in reheating microstructure and can rapidly form liquid phase among grains. Therefore, rheocasting billets are more suitable for the semi-solid forming than the extruding/extending forming billets.
文摘In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by a mechanical stirring semi-solid process. The appropriate processing parameters of slurry preparation were obtained, and the mold filling ability of semi-solid slurry for thin-walled casting was examined. Results indicate that the solid volume fraction of non-dendritic microstructure increases with a decrease in pouring temperature of magnesium melt and the barrel preheating temperature of the screw mixer. Also the grain size of primary α-phase is reduced. Furthermore, the solid volume fraction of semi-solid nondendritic structure decreases with an increase of shear rate. The fine and round granular microstructure with 30~50 μm in size of semi-solid AZ91D magnesium alloy was presented. Finally, a 1.0 mm thin-walled casting with a clear contour and good soundness was successfully made by semi-solid rheo-diecasting.
基金Funded by the National Natural Science Foundation of China(No.50274020) and Baoshan Iron &Steel Corporation of Shanghai
文摘Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.
基金Project (2007AA03Z557) supported by the National High-Tech Research and Development Program of ChinaProject (50775086) supported by the National Natural Science Foundation of China
文摘The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the preparation of the semi-solid slurry of this alloy.The results show that the primary Si particles in this alloy is about 20 μm in size under DUV for 90 s in the semi-solid temperature range,compared to about 30 μm in the alloy without DUV.It is discovered that the primary Si particles distribute more homogeneously and have regular shape,but have lower volume fraction after DUV.The tensile strength at room temperature is about 310 MPa,and the tensile strength and elongation of the semi-solid die castings are increased by 34% and 45%,respectively,compared with the traditional liquid die castings.The high-temperature tensile strength at 300 ℃ of this high Si aluminum alloy reaches 167 MPa,and the coefficient of thermal expansion is 17.37×10-6/℃ between 25 and 300 ℃.This indicates that this high Si content Al-Si alloy produced with the DUV process is suitable to be used in the manufacture of pistons or other heat-resistant parts.
文摘The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by firstly measuring the chemical composition of the surface of the plates using a Thermo Quantris optical emission spectrometer(OES).Material was then removed by a grinding process followed by measurement of the amount of material removed and chemical analysis.Chemical profiles of the main alloying elements were plotted for the cross-section of the plates in the as-cast and T6(after solution treatment) temper conditions.Vickers hardness profiles from the surface to the centre of the plates were determined.Metallographic samples of cross-sections of the castings were prepared and evaluated using a scanning electron microscope.The results show that surface liquid segregation in SSM-HPDC alloys causes significant differences in properties between the surface and the bulk of these castings in both the F and T6 temper conditions.