The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular brea...The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular breakwater is used in design. Therefore, a new calculation method for the wave forces acting on a submerged semi-circular structure is given in this paper, in which the wave force acting on the inside circumference of semi-circular arch is included, and the phase modification coefficient in the general empirical formula is adjusted as well. The new wave force calculation method has been Verified by the results of seven related physical model tests and adopted in the design of the south esturary jetty of the first stage project of Deep Channel Improvement Project of the Yangtze River Estuary, the total jetty length being 17.5 km.展开更多
The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculat...The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculation in fluid domain into its boundary alone. In the calculation the computation domain is moved with the propagation of waves. A numerical solution is obtained for incident Stokes waves passing the submerged obstacles. This method has been extended to the calculation of wave run-up on a slope for estimating wave overtopping.展开更多
A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to recons...A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to reconstruct the free surface. The model was verified by experimental data. Then the model was used to simulate solitary wave interaction with submerged, alternative submerged and emerged semi-circular breakwaters. The process of velocity field, pressure field and the wave surface near the breakwaters was obtained. It is found that when the semi-circular breakwater is submerged, a large vortex will be generated at the bottom of the lee side wall of the breakwater; when the still water depth is equal to the radius of the semi-circular breakwater, a pair of large vortices will be generated near the shoreward wall of the semi-circular breakwater due to wave impacting, but the velocity near the bottom of the lee side wall of the breakwater is always relatively small. When the semi-circular breakwater is emerged, and solitary wave cannot overtop it, the solitary wave surface will run up and down secondarily during reflecting from the breakwater. It can be further used to estate the diffusing and transportation of the contamination and transportation of suspended sediment.展开更多
In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks w...In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.展开更多
The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An a...The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.展开更多
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a verti...Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.展开更多
文摘The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular breakwater is used in design. Therefore, a new calculation method for the wave forces acting on a submerged semi-circular structure is given in this paper, in which the wave force acting on the inside circumference of semi-circular arch is included, and the phase modification coefficient in the general empirical formula is adjusted as well. The new wave force calculation method has been Verified by the results of seven related physical model tests and adopted in the design of the south esturary jetty of the first stage project of Deep Channel Improvement Project of the Yangtze River Estuary, the total jetty length being 17.5 km.
文摘The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculation in fluid domain into its boundary alone. In the calculation the computation domain is moved with the propagation of waves. A numerical solution is obtained for incident Stokes waves passing the submerged obstacles. This method has been extended to the calculation of wave run-up on a slope for estimating wave overtopping.
文摘A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to reconstruct the free surface. The model was verified by experimental data. Then the model was used to simulate solitary wave interaction with submerged, alternative submerged and emerged semi-circular breakwaters. The process of velocity field, pressure field and the wave surface near the breakwaters was obtained. It is found that when the semi-circular breakwater is submerged, a large vortex will be generated at the bottom of the lee side wall of the breakwater; when the still water depth is equal to the radius of the semi-circular breakwater, a pair of large vortices will be generated near the shoreward wall of the semi-circular breakwater due to wave impacting, but the velocity near the bottom of the lee side wall of the breakwater is always relatively small. When the semi-circular breakwater is emerged, and solitary wave cannot overtop it, the solitary wave surface will run up and down secondarily during reflecting from the breakwater. It can be further used to estate the diffusing and transportation of the contamination and transportation of suspended sediment.
文摘In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51322903 and 51279224)Program for New Century Excellent Talents in University(Grant No.NCET-13-0528)
文摘The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.
基金supported by the National Natural Science Foundation of China(Grant No.50779045)
文摘Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.