The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-ori...The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.展开更多
ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compre...ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola tion (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich's semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re..R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re..R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with non uniform grid cells, which also verified the Re_R2007 scheme's advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.展开更多
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with...A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.展开更多
A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its p...A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.展开更多
We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conse...We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.展开更多
The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part o...The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.展开更多
This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of soun...This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub- cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.展开更多
This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that...This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that the precisions of the advanced Adams-Bashfold-Moulton(ABM) method and the Runge-Kutta(RK) method were in the same order and both were much higher than that of the Euler method.Furthermore,the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption.We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm.Secondly,we performed a sensitivity test for time steps,using outputs of the hydrodynamic model,Symphonie.Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields.The method introduced by Oliveira et al.in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models,at least when only considering advection.展开更多
The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are us...The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.展开更多
Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Four...Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Fourier modes through the triadic interaction, whether or not various forc ing schemes affect the statistics in turbulence is an impor tant and open question. We present detailed comparison of Lagrangian statistics of fluids particles in forced isotropic turbulent flows in 1283, 2563, and 5123 simulations, with Taylorscale Reynolds numbers in the range of 64-171, us ing a deterministic and a stochastic forcing scheme, respec tively. Several Lagrangian statistics are compared, such as velocity and acceleration autocorrelations, and moments of Lagrangian velocity increments. The differences in the La grangian statistics obtained from the two forcing schemes are shown to be small, indicating that the isotropic forcing schemes used have little effects on the Lagrangian statistics in the isotropic turbulence.展开更多
The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux...The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.展开更多
The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscil...The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).展开更多
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ...A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.展开更多
When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by usin...When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.展开更多
The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite co...The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.展开更多
We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equati...We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.展开更多
In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-...In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.展开更多
Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have b...Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.展开更多
基金This paper is sponsored by the National Natural Science Foundation of China (No. 40575050) the National Key Program for Developing Basic Reseach ("973") (No. 2004CB418306).
文摘The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.
基金jointly sponsored by the Key Project of the Chinese National Programs for Fundamental Research and Development ("973 Program" Grant No.2013CB430106)+1 种基金the Key Project of the Chinese National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No.2012BAC22B01)the National Natural Science Foundation of China ( Grant No.41375108)
文摘ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola tion (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich's semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re..R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re..R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with non uniform grid cells, which also verified the Re_R2007 scheme's advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.
基金supported by the Chinese Academy of Science Strategic Priority Research Program (Grant No. XDA05110303)"973" Program (Grant Nos. 2010CB950403,2012CB417203,and 2013CB955803)+1 种基金"863" Program(Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant Nos. 40925015,40875034,and 41023002)
文摘A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
文摘A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.
基金support by Fondazione Cariplo and Fondazione CDP(Italy)under the project No.2022-1895.
文摘We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.
文摘The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.
基金supported by the National Natural Science Foundation of China (No. 11172050)
文摘This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub- cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.
基金Supported by the Project Lagrangian Zooplankton Computation and Experiment (CNRS Programme EC2CO)the National Natural Science Fundation of China (Nos. 40821004,40706059)
文摘This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion:numerical schemes and time steps.Firstly,we compared three numerical schemes using idealized circulations.Results show that the precisions of the advanced Adams-Bashfold-Moulton(ABM) method and the Runge-Kutta(RK) method were in the same order and both were much higher than that of the Euler method.Furthermore,the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption.We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm.Secondly,we performed a sensitivity test for time steps,using outputs of the hydrodynamic model,Symphonie.Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields.The method introduced by Oliveira et al.in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models,at least when only considering advection.
文摘The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.
基金supported by the 973 Program of China(2013CB834100)the National Natural Science Associate Foundation of China(U1230126)the National Science Foundation of China(11472277 and 11232011)
文摘Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Fourier modes through the triadic interaction, whether or not various forc ing schemes affect the statistics in turbulence is an impor tant and open question. We present detailed comparison of Lagrangian statistics of fluids particles in forced isotropic turbulent flows in 1283, 2563, and 5123 simulations, with Taylorscale Reynolds numbers in the range of 64-171, us ing a deterministic and a stochastic forcing scheme, respec tively. Several Lagrangian statistics are compared, such as velocity and acceleration autocorrelations, and moments of Lagrangian velocity increments. The differences in the La grangian statistics obtained from the two forcing schemes are shown to be small, indicating that the isotropic forcing schemes used have little effects on the Lagrangian statistics in the isotropic turbulence.
文摘The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.
文摘The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).
基金This research was funded by the National Natural Science Foundation of China[grant number 41705119]a basic research project[grant number xxx0109-301].
文摘A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.
基金Project supported by the National Natural Science of China(Grant Nos.21434001,51561145002,and 11421110001)
文摘When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.
基金supported by the National Natural Science Foundation of China(71401106)the Innovation Program of Shanghai Municipal Education Commission(14YZ090)+4 种基金the Shanghai Natural Science Foundation(14ZR1418700)the Shanghai First-class Academic Discipline Project(S1201YLXK)the Hujiang Foundation of China(A14006)the grant S2009/esp-1594 from the Comunidad de Madrid(Spain)the grant MTM2012-36163-C06-06 from the Spanish government
文摘The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.
文摘We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.
文摘In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.
文摘Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.