The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of bille...The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.展开更多
In this paper the effect of pouring temperature of magnesium melt, preheating temperature of the barrel of screw mixer and shear rate on the solidified microstructures of semi-solid slurry was investigated by mechanic...In this paper the effect of pouring temperature of magnesium melt, preheating temperature of the barrel of screw mixer and shear rate on the solidified microstructures of semi-solid slurry was investigated by mechanical stirring method. The appropriate processing parameters of slurry preparation were obtained. The mold filling for thin walled casting was examined. Results indicated that the solid volume fraction of non-dendritic structure increased with decrease in pouring temperature of magnesium melt and the barrel preheating temperature of screw mixer. Also the grain size of primary α phase was reduced. Furthermore, the solid volume fraction of semi-solid non-dendritic structure decreased with the increase in shear rate. In the same time, grain size of primary α phase slightly changed. The fine-round granular solidified structure with 30~50 μm of prepared AZ91D magnesium semi-solid slurry was presented. Finally, it is successful to fabricate 1.0 mm extremely thin walled casting with clear contour and good soundness.展开更多
To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconven...To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconventional innovative technological procedures.One of these technologies is the forming in semi-solid state involving rapid solidification of miniature components from steels.Production of such components is complicated by a number of technical problems.To explain phenomena of the process and structure development,the production of miniature components from the tool steel X210Cr12 difficult to form was experimentally tested.The structure of this originally ledeburite steel consisted of 95 % of metastable austenite after the treatment.Metastable austenite was located particularly in globular and polygonal grains while the remaining interspaces were filled by lamellar network.The detected high stability of extremely high fraction of metastable austenite was tested under different conditions of thermal exposition and mechanical loading.展开更多
Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room te...Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K.展开更多
A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-fram...A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-frames were prepared by this technology with Al_p and SiC_p materials mixed with different volume fractions. It is proved that it is feasible for the forming of the ceramic matrix composites by this technology through metallographic analyses and tensile tests. The results also show that the microstructures of samples are homogeneous and they have high hardness and certain plasticity.展开更多
The processing parameters were achieved about the thixoforming of spray deposition AlZn 12Cu2Mg2 wrought aluminum alloy in semi-solid ingots and the structures and mechanical properties of the analogue work pieces wer...The processing parameters were achieved about the thixoforming of spray deposition AlZn 12Cu2Mg2 wrought aluminum alloy in semi-solid ingots and the structures and mechanical properties of the analogue work pieces were tested. The optimum heat treatment parameters of the alloy by the optimization experiment were obtained (460℃ being the optimum solution temperature and 12-14h being the optimum artificial aging time). The results show that AlZn 12Cu2Mg2 alloy can achieve ideal mechanical properties and elongation after solution treatment and aging treatment by semi-solid process. Under 120MPa and at 595-600℃, the yield strength and elongation of the heat-treated parts can reach 664MPa and 7.5% respectively.展开更多
In the present study, Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn al oy samples were prepared by electromagnetic stirring and semi-solid forming processing, and then the effects of T6 and T1 heat treatments on the microstructures an...In the present study, Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn al oy samples were prepared by electromagnetic stirring and semi-solid forming processing, and then the effects of T6 and T1 heat treatments on the microstructures and mechanical properties of the semi-solid forming samples were investigated. The results indicate that after semi-solid forming, the mechanical properties of the sample improved significantly compared to that of the merely electromagnetically stirred sample. The grains of semi-solid forming alloy became almost fine equiaxed; big long strip-shaped Al3 Fe phases became short rod-like morphology and distributed uniformly in the matrix. However, the mechanical properties of the T6-treated semi-solid forming sample decreased significantly instead of increasing and, with solution temperature rising, the tensile strength of the al oy decreased further. The results of EDS show that after high temperature solid-solution treatment, the Cu element in the semi-solid forming alloy sample is mainly concentrated at the boundaries of the Al3 Fe phases instead of being dissolved in the matrix. At the same time, the grains of the semi-solid forming sample grew slightly after solid-solution treatment. Therefore, the growth of the grains and the accumulation of Cu element at Al3 Fe phase boundaries during solution treatment of the semi-solid forming alloy were the main reasons for the mechanical properties decreasing after T6 treatment. The mechanical properties of the alloy were improved after T1 heat treatment due to aging strengthening phase being precipitated in the matrix.展开更多
A motorcycle component of damper housing was made by semi-solid forming process. This was used to investigate the effect of microstructures of feedstock on the formability of semisolid process. The soundness and micro...A motorcycle component of damper housing was made by semi-solid forming process. This was used to investigate the effect of microstructures of feedstock on the formability of semisolid process. The soundness and microstructures of casting parts made by dendritic and non-dendritic feedstock were investigated. Separating of liquid phase was found in the casting produced by dendritic feedstock, which might result in defects of porosity, while uniform microstructures were found in the casting produced by no...展开更多
Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, no...Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.展开更多
Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to...Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.展开更多
The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging...The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.展开更多
The mechanism of the tension and fracture of 2024Al alloy at semi solid were theoretically and experimentally investigated, with the isothermal tension of 2024Al alloy at semi solid state as an example. Results of the...The mechanism of the tension and fracture of 2024Al alloy at semi solid were theoretically and experimentally investigated, with the isothermal tension of 2024Al alloy at semi solid state as an example. Results of theoretical and experimental analysis show that the tensile deformation of 2024Al alloy at semi solid state is achieved by the relative sliding of grains and the deformation of liquid membrane under tensile stress. The relative sliding of grains is mainly accommodated by the nucleation and growth of cavities under tensile stress. A cavity will nucleate in the region with the largest hydrostatic stress at first and then grow along preferential grain boundaries, leading to the final fracture of specimen along grain boundaries. [展开更多
A numerical model was developed to simulate the jet-flow solid fraction of W18Cr4 V high-speed steel during spray forming. The whole model comprises two submodels: one is an individual droplet model, which describes t...A numerical model was developed to simulate the jet-flow solid fraction of W18Cr4 V high-speed steel during spray forming. The whole model comprises two submodels: one is an individual droplet model, which describes the motion and thermal behaviors of individual droplets on the basis of Newton's laws of motion and the convection heat transfer mechanism; the other is a droplet distribution model, which is used to calculate the droplet size distribution. After being verified, the model was used to analyze the effects of parameters, including the initial gas velocity, deposition distance, superheat degree, and the ratio of gas-to-metal mass flow rates, on the jet-flow solid fraction. Finally, an equation to predict the jet-flow solid fraction directly and conveniently according to the parameters was presented. The values predicted by the equation show good agreement with those calculated by the numerical model.展开更多
An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 allo...An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.展开更多
A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geomet...A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.展开更多
The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the mic...The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.展开更多
The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the micros...The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.展开更多
The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys a...The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.展开更多
The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirri...The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirring power condition, even if the stirring time is shorter, while the proeutectic austenitic particles are not very much spherical under a smaller stirring power condition and some proeutectic austenitic dendrites also exist, even if the stirring time is very long. The experiments also show that when stirred for 5-6 minutes under the test condition, the semi-solid slurry with 40vol.%-50vol.% solid fraction and spherical proeutectic austenite in the size of 50-80μm can be obtained.展开更多
Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compressio...Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compression and ECAE, as-cast microstructures exhibit an obvious directional characteristic. The predeformation exerts a significant influence on the formation of thixotropic microstructures during partial remelting. Coalescence and Ostwald ripening are operative in the semi-solid mixture for both compression and ECAE formed alloys. Furthermore, the degree of spheroidization of ECAE formed alloy is better than that of compression formed alloy in appearance.展开更多
文摘The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.
文摘In this paper the effect of pouring temperature of magnesium melt, preheating temperature of the barrel of screw mixer and shear rate on the solidified microstructures of semi-solid slurry was investigated by mechanical stirring method. The appropriate processing parameters of slurry preparation were obtained. The mold filling for thin walled casting was examined. Results indicated that the solid volume fraction of non-dendritic structure increased with decrease in pouring temperature of magnesium melt and the barrel preheating temperature of screw mixer. Also the grain size of primary α phase was reduced. Furthermore, the solid volume fraction of semi-solid non-dendritic structure decreased with the increase in shear rate. In the same time, grain size of primary α phase slightly changed. The fine-round granular solidified structure with 30~50 μm of prepared AZ91D magnesium semi-solid slurry was presented. Finally, it is successful to fabricate 1.0 mm extremely thin walled casting with clear contour and good soundness.
基金the project 1M06032 Research Centre of Forming TechnologySlovak and Czech Project SK-CZ-0180-09
文摘To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconventional innovative technological procedures.One of these technologies is the forming in semi-solid state involving rapid solidification of miniature components from steels.Production of such components is complicated by a number of technical problems.To explain phenomena of the process and structure development,the production of miniature components from the tool steel X210Cr12 difficult to form was experimentally tested.The structure of this originally ledeburite steel consisted of 95 % of metastable austenite after the treatment.Metastable austenite was located particularly in globular and polygonal grains while the remaining interspaces were filled by lamellar network.The detected high stability of extremely high fraction of metastable austenite was tested under different conditions of thermal exposition and mechanical loading.
基金Project(50605015)supported by the National Natural Science Foundation of China
文摘Preparation of semi-solid billet of magnesium alloy and thixoforming was investigated by applying equal channel angularextrusion to magnesium alloy.The results show that mechanical properties of AZ91D alloy at room temperature,such as yieldstrength(YS),ultimate tensile strength(UTS)and elongation,are enhanced greatly by four-pass equal channel angularextrusion(ECAE)at 573 K and microstructure of AZ91D alloy is refined to the average grain size of 20μm.Through using ECAE asstrain induced step in SIMA and completing melt activated step by semi-solid isothermal treatment,semi-solid billet with finespheroidal grains of 25μm can be prepared successfully.Compared with common SIMA,thixoformed satellite angle framecomponents using semi-solid billet prepared by new SIMA have higher mechanical properties at room temperature and hightemperature of 373 K.
文摘A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-frames were prepared by this technology with Al_p and SiC_p materials mixed with different volume fractions. It is proved that it is feasible for the forming of the ceramic matrix composites by this technology through metallographic analyses and tensile tests. The results also show that the microstructures of samples are homogeneous and they have high hardness and certain plasticity.
文摘The processing parameters were achieved about the thixoforming of spray deposition AlZn 12Cu2Mg2 wrought aluminum alloy in semi-solid ingots and the structures and mechanical properties of the analogue work pieces were tested. The optimum heat treatment parameters of the alloy by the optimization experiment were obtained (460℃ being the optimum solution temperature and 12-14h being the optimum artificial aging time). The results show that AlZn 12Cu2Mg2 alloy can achieve ideal mechanical properties and elongation after solution treatment and aging treatment by semi-solid process. Under 120MPa and at 595-600℃, the yield strength and elongation of the heat-treated parts can reach 664MPa and 7.5% respectively.
基金financially supported by the Natural Science Foundation of Liaoning Province(201202166)the Shenyang City Application Basic Research Foundation(F14-231-1-23)
文摘In the present study, Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn al oy samples were prepared by electromagnetic stirring and semi-solid forming processing, and then the effects of T6 and T1 heat treatments on the microstructures and mechanical properties of the semi-solid forming samples were investigated. The results indicate that after semi-solid forming, the mechanical properties of the sample improved significantly compared to that of the merely electromagnetically stirred sample. The grains of semi-solid forming alloy became almost fine equiaxed; big long strip-shaped Al3 Fe phases became short rod-like morphology and distributed uniformly in the matrix. However, the mechanical properties of the T6-treated semi-solid forming sample decreased significantly instead of increasing and, with solution temperature rising, the tensile strength of the al oy decreased further. The results of EDS show that after high temperature solid-solution treatment, the Cu element in the semi-solid forming alloy sample is mainly concentrated at the boundaries of the Al3 Fe phases instead of being dissolved in the matrix. At the same time, the grains of the semi-solid forming sample grew slightly after solid-solution treatment. Therefore, the growth of the grains and the accumulation of Cu element at Al3 Fe phase boundaries during solution treatment of the semi-solid forming alloy were the main reasons for the mechanical properties decreasing after T6 treatment. The mechanical properties of the alloy were improved after T1 heat treatment due to aging strengthening phase being precipitated in the matrix.
文摘A motorcycle component of damper housing was made by semi-solid forming process. This was used to investigate the effect of microstructures of feedstock on the formability of semisolid process. The soundness and microstructures of casting parts made by dendritic and non-dendritic feedstock were investigated. Separating of liquid phase was found in the casting produced by dendritic feedstock, which might result in defects of porosity, while uniform microstructures were found in the casting produced by no...
基金Project(50775197)supported by the National Natural Science Foundation of China
文摘Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.
基金Funded by the National Natural Science Foundation of China(No.50274020) and Baoshan Iron &Steel Corporation of Shanghai
文摘Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.
基金supported by the Program for New Century Excellent Talents in Universities of China (No.NCET-06-0879)the National Natural Science Foundation of China (No.50331010)+2 种基金the Northwestern Polytechnical University Foundation of Fundamental Research (No.NPU-FFR-JC200808)the National Basic Research Program of China (No.2007CB613800)the Program of Introducing Talents of Discipline to Universities,China (No.08040)
文摘The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.
文摘The mechanism of the tension and fracture of 2024Al alloy at semi solid were theoretically and experimentally investigated, with the isothermal tension of 2024Al alloy at semi solid state as an example. Results of theoretical and experimental analysis show that the tensile deformation of 2024Al alloy at semi solid state is achieved by the relative sliding of grains and the deformation of liquid membrane under tensile stress. The relative sliding of grains is mainly accommodated by the nucleation and growth of cavities under tensile stress. A cavity will nucleate in the region with the largest hydrostatic stress at first and then grow along preferential grain boundaries, leading to the final fracture of specimen along grain boundaries. [
基金financially supported by the National High-Tech Research and Development Program of China (No. 2012AA03A509)the National Natural Science Foundation of China (No. 51204015)
文摘A numerical model was developed to simulate the jet-flow solid fraction of W18Cr4 V high-speed steel during spray forming. The whole model comprises two submodels: one is an individual droplet model, which describes the motion and thermal behaviors of individual droplets on the basis of Newton's laws of motion and the convection heat transfer mechanism; the other is a droplet distribution model, which is used to calculate the droplet size distribution. After being verified, the model was used to analyze the effects of parameters, including the initial gas velocity, deposition distance, superheat degree, and the ratio of gas-to-metal mass flow rates, on the jet-flow solid fraction. Finally, an equation to predict the jet-flow solid fraction directly and conveniently according to the parameters was presented. The values predicted by the equation show good agreement with those calculated by the numerical model.
文摘An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.
基金Project(2018YFB1105804)supported by the National Key R&D Program of ChinaProject(2020-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China。
文摘A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.
基金This work was financially supported by the National Natural Science Foundation of China (No.50171010)
文摘The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.
基金The authors would like to thank the National Natural Science Foundation of China and Baoshan Iron&Steel Co.of Shanghai for financial support under the grant No.50274020.
文摘The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.
文摘The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.
基金supported by the National Natural Science Foundation of China(No.59995440)
文摘The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirring power condition, even if the stirring time is shorter, while the proeutectic austenitic particles are not very much spherical under a smaller stirring power condition and some proeutectic austenitic dendrites also exist, even if the stirring time is very long. The experiments also show that when stirred for 5-6 minutes under the test condition, the semi-solid slurry with 40vol.%-50vol.% solid fraction and spherical proeutectic austenite in the size of 50-80μm can be obtained.
文摘Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compression and ECAE, as-cast microstructures exhibit an obvious directional characteristic. The predeformation exerts a significant influence on the formation of thixotropic microstructures during partial remelting. Coalescence and Ostwald ripening are operative in the semi-solid mixture for both compression and ECAE formed alloys. Furthermore, the degree of spheroidization of ECAE formed alloy is better than that of compression formed alloy in appearance.