By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are prov...By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.展开更多
A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The suffi...A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The sufficient optimality conditions and Mond Weir type duality results are obtained for a nondifferentiable nonlinear semi infinite programming problem involving quasi B s invex and pseudo B s invex functions.展开更多
Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We...Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We prove that × L(*Si) CL(*S) and in embedding meaning.展开更多
Based on the fundamental equations of magnetoelectroelastic material and the analytic theory, and using the Muskhelishvili-introduced well-known elastic techniques combined with the superposition principle, the closed...Based on the fundamental equations of magnetoelectroelastic material and the analytic theory, and using the Muskhelishvili-introduced well-known elastic techniques combined with the superposition principle, the closed form solution of the generalized stress field of the interaction between many parallel screw dislocations and a semi-infinite crack in an infinite magnetoelectroelastic solid is obtained, on the assumption that the surface of the crack is impermeable electrically and magnetically. Besides, the Peach-Koehler formula of n parallel screw dislocations is given. Numerical examples show that the generalized stress varies with the position of point z and is related to the material constants. The results indicate that the stress concentration occurs at the dislocation core and the tip of the crack. The result of interaction makes the system stay in a lower energy state.展开更多
By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions o...By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.展开更多
The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite p...The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.展开更多
This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's co...This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.展开更多
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-pla...Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.展开更多
A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S...A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.展开更多
The problem of a semi-infinite medium subjected to thermal shock on its plane boundary is solved in the context of the dual-phase-lag thermoelastic model. The expressions for temperature, displacement and stress are p...The problem of a semi-infinite medium subjected to thermal shock on its plane boundary is solved in the context of the dual-phase-lag thermoelastic model. The expressions for temperature, displacement and stress are presented. The governing equations are expressed in Laplace transform domain and solved in that domain. The solution of the problem in the physical domain is obtained by using a numerical method for the inversion of the Laplace transforms based on Fourier series expansions. The numerical estimates of the displacement, temperature, stress and strain are obtained for a hypothetical material. The results obtained are presented graphically to show the effect phase-lag of the heat flux and a phase-lag of temperature gradient on displacement, temperature, stress.展开更多
Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the ...Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.展开更多
Abstract This paper studies three-dimensional diffraction of obliquely incident plane SH waves by twin infinitely long cylindrical cavities in layered poroelastic half-space using indirect boundary element method. The...Abstract This paper studies three-dimensional diffraction of obliquely incident plane SH waves by twin infinitely long cylindrical cavities in layered poroelastic half-space using indirect boundary element method. The approach is validated by comparison with the literature, and the effects of cavity interval, incident frequency, and boundary drainage condition on the diffraction are studied through numerical examples. It is shown that, the interaction between two cavities is significant and surface displacement peaks become large when two cavities are close, and the surface displacement may be significantly amplified by twin cavities, and the influence range with large amplification can be as wide as 40 times of the cavity radius. Surface displacements in dry poroelastic case and saturated poroelastic cases with drained and undrained boundaries are evidently different under certain circumstances, and the differences may be much larger than those in the free-field response.展开更多
By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a...By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a 2D semi infinite body is presented in this paper. The pressure coefficients obtained by the present method agree well with those given by Acrivous, showing the validity of our method.展开更多
We study in this paper a Hilbert space HV associated with the coarse geometry of an infinite connected graph X(V, E) with vertex set V and edge set E. We show that X(V,E) is uniformly expanding if and only ifl2(V)can ...We study in this paper a Hilbert space HV associated with the coarse geometry of an infinite connected graph X(V, E) with vertex set V and edge set E. We show that X(V,E) is uniformly expanding if and only ifl2(V)can be continuously included in HV as a closed subspace,and that the inner product structure of HV is topologically invariant under uniform coarsening of the graph. We also discuss the functorial properties of these Hilbert spaces.展开更多
We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis ...We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper paves the way for the study of corresponding problems associated with some other types of Banach spaces on locally compact abelian groups including modulation spaces.展开更多
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a...The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.展开更多
In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These co...In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.展开更多
This paper studies quantum diffusion in semi-infinite one-dimensional periodic lattice and quasiperiodic Fibonacci lattice. It finds that the quantum diffusion in the semi-infinite periodic lattice shows the same prop...This paper studies quantum diffusion in semi-infinite one-dimensional periodic lattice and quasiperiodic Fibonacci lattice. It finds that the quantum diffusion in the semi-infinite periodic lattice shows the same properties as that for the infinite periodic lattice. Different behaviour is found for the semi-infinite Fibonacci lattice. In this case, there are still C(t) - t^-δ and d(t) - t^β. However, it finds that 0 〈δ 〈 1 for smaller time, and δ = 0 for larger time due to the influence of surface localized states. Moreover, β for the semi-infinite Fibonacci lattice is much smaller than that for the infinite Fibonacci lattice. Effects of disorder on the quantum diffusion are also discussed.展开更多
In the present paper a finite layer method is studied for the flastodynarnics of transverse isotropic bodies. With this method, semi-infinite soils can be considered as an transverse isotropic half-space, its material...In the present paper a finite layer method is studied for the flastodynarnics of transverse isotropic bodies. With this method, semi-infinite soils can be considered as an transverse isotropic half-space, its material functions varying with depth. Dividing the half-space into a scries of layers in the direction of depth, the material junctions in each layer are simulated by exponential functions Consequently, the fundamental equations to be solved can be simplified if the Fourier transform with repsect to coordinates is used. We have obtained the relationship between the 'layer forces' and 'layer displacements'. This finite layer method, in fact, can also be called a semi-analytical method. It possesses those advantages as the usual semi-analytical methods do, and can be used to analyse the problem of the interaction between soils and structures.展开更多
In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodvnamics of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axis...In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodvnamics of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axisymmetric problems and static problems are discussed, respectively, and this finite layer method is also generalized to the problems in which materials possess viscous properties. Two numerical examples have been presented for the axisymmetric case. From these two examples it can be concluded that the finite layer method can be used to analyse semi-infinite layered soils and to deal with the problem of the interaction between soils and structures.展开更多
文摘By applying a new existence theorem of quasi-equilibrium problems due to the author, some existence theorems of solutions for noncompact infinite optimization problems and noncompact constrained game problems are proved in generalized convex spaces without linear structure. These theorems improve and generalize a number of important results in recent literature.
基金the Natural Science Foundation of Shaanxi Province and the Science Foundation of Shaanxi Provincial Educational CommitteeP.R.China
文摘A class of functions called quasi B s invex and pseudo B s invex functions are introduced by using the concept of symmetric gradient. The examples of quasi B s invex and pseudo B s invex functions are given. The sufficient optimality conditions and Mond Weir type duality results are obtained for a nondifferentiable nonlinear semi infinite programming problem involving quasi B s invex and pseudo B s invex functions.
基金The Special Science Foundation (00jk207) of the Educational Committee of Shaanxi Province.
文摘Let {(Xi, Si, μi) : i ℃ N} be a sequence of probability measure spaces and (*Xi, L(*Si), L(*μi)) be the Loeb measure space with respect to (Xi, Si, μi) for i ℃ N. Let X =× Xi, S = ×Si,μ = ×μi. We prove that × L(*Si) CL(*S) and in embedding meaning.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11262017,11262012,and 11462020)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2015MS0129)+1 种基金the Key Project of Inner Mongolia Normal University,China(Grant No.2014ZD03)the Graduate Research Innovation Project of Inner Mongolia Autonomous Region,China(Grant No.S20171013502)
文摘Based on the fundamental equations of magnetoelectroelastic material and the analytic theory, and using the Muskhelishvili-introduced well-known elastic techniques combined with the superposition principle, the closed form solution of the generalized stress field of the interaction between many parallel screw dislocations and a semi-infinite crack in an infinite magnetoelectroelastic solid is obtained, on the assumption that the surface of the crack is impermeable electrically and magnetically. Besides, the Peach-Koehler formula of n parallel screw dislocations is given. Numerical examples show that the generalized stress varies with the position of point z and is related to the material constants. The results indicate that the stress concentration occurs at the dislocation core and the tip of the crack. The result of interaction makes the system stay in a lower energy state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11462020,11262017,and 11262012)the Key Project of Inner Mongolia Normal University,China(Grant No.2014ZD03)
文摘By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.
基金Supported by the National Key Basic Research Special Fund(2003CB415200)the National Science Foundation(70371032 and 60274048)the Doctoral Foundation of the Ministry of Education(20020486035)
文摘The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.
文摘This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.
基金supported by the National Natural Science Foundation of China (10872195)
文摘A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.
文摘The problem of a semi-infinite medium subjected to thermal shock on its plane boundary is solved in the context of the dual-phase-lag thermoelastic model. The expressions for temperature, displacement and stress are presented. The governing equations are expressed in Laplace transform domain and solved in that domain. The solution of the problem in the physical domain is obtained by using a numerical method for the inversion of the Laplace transforms based on Fourier series expansions. The numerical estimates of the displacement, temperature, stress and strain are obtained for a hypothetical material. The results obtained are presented graphically to show the effect phase-lag of the heat flux and a phase-lag of temperature gradient on displacement, temperature, stress.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)
文摘Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.
基金supported by National Natural Science Foundation of China under grant 51378384Key Project of Natural Science Foundation of Tianjin Municipality under Grant 12JCZDJC29000
文摘Abstract This paper studies three-dimensional diffraction of obliquely incident plane SH waves by twin infinitely long cylindrical cavities in layered poroelastic half-space using indirect boundary element method. The approach is validated by comparison with the literature, and the effects of cavity interval, incident frequency, and boundary drainage condition on the diffraction are studied through numerical examples. It is shown that, the interaction between two cavities is significant and surface displacement peaks become large when two cavities are close, and the surface displacement may be significantly amplified by twin cavities, and the influence range with large amplification can be as wide as 40 times of the cavity radius. Surface displacements in dry poroelastic case and saturated poroelastic cases with drained and undrained boundaries are evidently different under certain circumstances, and the differences may be much larger than those in the free-field response.
文摘By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a 2D semi infinite body is presented in this paper. The pressure coefficients obtained by the present method agree well with those given by Acrivous, showing the validity of our method.
基金This research is supported by the NSF from Shanghai Science and Technology Commission, No.01ZA14003.
文摘We study in this paper a Hilbert space HV associated with the coarse geometry of an infinite connected graph X(V, E) with vertex set V and edge set E. We show that X(V,E) is uniformly expanding if and only ifl2(V)can be continuously included in HV as a closed subspace,and that the inner product structure of HV is topologically invariant under uniform coarsening of the graph. We also discuss the functorial properties of these Hilbert spaces.
基金"This work is supported by the financial grant of DST/MS/150 2K".
文摘We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper paves the way for the study of corresponding problems associated with some other types of Banach spaces on locally compact abelian groups including modulation spaces.
文摘The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.
文摘In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.
基金Project supported by the National Natural Science Foundation of China(Grant No19674046)the Cheung Kong Scholars Programme of Chinathe Construct Program of the Key Discipline in Hunan Province,China
文摘This paper studies quantum diffusion in semi-infinite one-dimensional periodic lattice and quasiperiodic Fibonacci lattice. It finds that the quantum diffusion in the semi-infinite periodic lattice shows the same properties as that for the infinite periodic lattice. Different behaviour is found for the semi-infinite Fibonacci lattice. In this case, there are still C(t) - t^-δ and d(t) - t^β. However, it finds that 0 〈δ 〈 1 for smaller time, and δ = 0 for larger time due to the influence of surface localized states. Moreover, β for the semi-infinite Fibonacci lattice is much smaller than that for the infinite Fibonacci lattice. Effects of disorder on the quantum diffusion are also discussed.
文摘In the present paper a finite layer method is studied for the flastodynarnics of transverse isotropic bodies. With this method, semi-infinite soils can be considered as an transverse isotropic half-space, its material functions varying with depth. Dividing the half-space into a scries of layers in the direction of depth, the material junctions in each layer are simulated by exponential functions Consequently, the fundamental equations to be solved can be simplified if the Fourier transform with repsect to coordinates is used. We have obtained the relationship between the 'layer forces' and 'layer displacements'. This finite layer method, in fact, can also be called a semi-analytical method. It possesses those advantages as the usual semi-analytical methods do, and can be used to analyse the problem of the interaction between soils and structures.
文摘In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodvnamics of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axisymmetric problems and static problems are discussed, respectively, and this finite layer method is also generalized to the problems in which materials possess viscous properties. Two numerical examples have been presented for the axisymmetric case. From these two examples it can be concluded that the finite layer method can be used to analyse semi-infinite layered soils and to deal with the problem of the interaction between soils and structures.