Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structur...Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.展开更多
To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized ...To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.展开更多
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S...This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.展开更多
Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend...Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.展开更多
We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are altern...We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are alternately superimposed.Under the normal incidence of left-handed circularly polarized(LCP)wave and the right-handed circularly polarized(RCP)waves,the proposed structure realizes three independent control functions,i.e.,focused and vortex beam,vortex beam with different topological charges,and polarization states switching,and azimuth switching of two vortex beams with different polarization states.The results show that the proposed metasurface provides a new idea for investigating the multifunctional terahertz wave modulation devices.展开更多
We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales The...We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper.展开更多
The stratospheric polar vortex oscillation (PVO) in the Northern Hemisphere is examined in a semiLagrangian θ-PVLAT coordinate constructed by using daily isentropic potential vorticity maps derived from NCEP/NCAR r...The stratospheric polar vortex oscillation (PVO) in the Northern Hemisphere is examined in a semiLagrangian θ-PVLAT coordinate constructed by using daily isentropic potential vorticity maps derived from NCEP/NCAR reanalysis Ⅱdataset covering the period from 1979 to 2003. In the semi-Lagrangian θ-PVLAT coordinate, the variability of the polar vortex is solely attributed to its intensity change because the changes in its location and shape would be naturally absent by following potential vorticity contours on isentropic surfaces. The EOF and regression analyses indicate that the PVO can be described by a pair of poleward and downward propagating modes. These two modes together account for about 82% variance of the daily potential vorticity anomalies over the entire Northern Hemisphere. The power spectral analysis reveals a dominant time scale of about 107 days in the time series of these two modes, representing a complete PVO cycle accompanied with poleward propagating heating anomalies of both positive and negative signs from the equator to the pole. The strong polar vortex corresponds to the arrival of cold anomalies over the polar circle and vice versa. Accompanied with the poleward propagation is a simultaneous downward propagation. The downward propagation time scale is about 20 days in high and low latitudes and about 30 days in mid-latitudes. The zonal wind anomalies lag the poleward and downward propagating temperature anomalies of the opposite sign by 10 days in low and high latitudes and by 20 days in mid-latitudes. The time series of the leading EOF modes also exhibit dominant time scales of 8.7, 16.9, and 33.8 months. They approximately follow a double-periodicity sequence and correspond to the 3-peak extratropical Quasi-Biennial Oscillation (QBO) signal.展开更多
This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an an...This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.展开更多
The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to inv...The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to investigate the distinction between early and late SPVB. The results showed that the anomalous circulation signals extending from the stratosphere to the troposphere were reversed before and after early SPVB, while the stratospheric signals were consistent before and after the onset of late SPVB. Arctic Oscillation (AO) evolution during the life cycle of SPVB also demonstrated that the negative AO signal can propagate downward after early SPVB. Such downward AO signals could be identified in both geopotential height and temperature anomalies. After the AO signal reached the lower troposphere, it influenced the Aleutian Low and Siberian High in the troposphere, leading to a weak winter monsoon and large-scale warming at mid latitudes in Asia. Compared to early SPVB, downward propagation was not evident in late SPVB. The high-latitude tropospheric circulation in the Northern Hemisphere was affected by early SPVB, causing it to enter a summer circulation pattern earlier than in late SPVB years.展开更多
During recent decades, the tropical Indo-Pacific Ocean has become increasingly warmer. Meanwhile, both the northern and southern hemispheric polar vortices (NPV and SPV) have exhibited a deepening trend in boreal wi...During recent decades, the tropical Indo-Pacific Ocean has become increasingly warmer. Meanwhile, both the northern and southern hemispheric polar vortices (NPV and SPV) have exhibited a deepening trend in boreal winter. Although previous studies have revealed that the tropical Indian Ocean warming (IOW) favors an intensifying NPV and a weakening SPV, how the tropical Pacific Ocean warming (POW) influences the NPV and SPV remains unclear. In this study, a comparative analysis has been conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the Northern Hemisphere, the two warmings exerted opposite impacts in boreal winter, in that the IOW intensified the NPV while the POW weakened the NPV. For the Southern Hemisphere, both the IOW and POW warmed the southern polar atmosphere and weakened the SPV. A diagnostic analysis based on the vorticity budget revealed that such an interhemispheric difference in influences from the IOW and POW in boreal winter was associated with different roles of transient eddy momentum flux convergence between the hemispheres. Furthermore, this difference may have been linked to different strengths of stationary wave activity between the hemispheres in boreal winter.展开更多
Using 1958-2002 NCEPNCAR reanalysis data, we investigate stationary and transient planetary wave propagation and its role in wave-mean flow interaction which influences the state of the polar vortex (PV) in the stra...Using 1958-2002 NCEPNCAR reanalysis data, we investigate stationary and transient planetary wave propagation and its role in wave-mean flow interaction which influences the state of the polar vortex (PV) in the stratosphere in Northern Hemisphere (NH) winter. This is done by analyzing the Eliassen-Palm (E-P) flux and its divergence. We find that the stationary and transient waves propagate upward and equatorward in NH winter, with stronger upward propagation of stationary waves from the troposphere to the stratosphere, and stronger equatorward propagation of transient waves from mid-latitudes to the subtropics in the troposphere. Stationary waves exhibit more upward propagation in the polar stratosphere during the weak polar vortex regime (WVR) than during the strong polar vortex regime (SVR). On the other hand, transient waves have more upward propagation during SVR than during WVR in the subpolar stratosphere, with a domain of low frequency waves. With different paths of upward propagation, both stationary and transient waves contribute to the maintenance of the observed stratospheric PV regimes in NH winter.展开更多
<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO...<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO coupling relationship exhibits distinct seasonal feature,due to the strong seasonality of PVO and ENSO.Specifically,the PVO variability not only during winter,but also in autumn and spring months,is significantly correlated with ENSO anomalies leading by seasons;however,no significant effect of ENSO is found on the PVO variability in winter months of November and February.Although a significant ENSO effect is primarily observed when ENSO leads PVO by about one year,a significant correlation is also found between PVO in the following spring months (M +1 A +1) and ENSO anomalies in the previous autumn (A-1 S-1 O- 1 N -1) when ENSO anomalies lead by about 18 months.The significant correlation between PVO in various seasons and the corresponding ENSO anomalies leading by seasons could be explicitly verified in most of the individual years,confirming that the lagged ENSO effect can largely modulate the seasonal timescale variability of PVO.Moreover,the composite spatial patterns of the zonal-mean temperature anomalies further show that the ENSO effect on the PVO in various seasons is related to the interannual variability of the seasonal timescale PVO events.展开更多
Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the f...Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.展开更多
The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement prec...The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.展开更多
Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase diffe...Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.展开更多
Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar...Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.展开更多
A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (...A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (λc,φc)–indices by use of 1948–2007 NCEP/NCAR 10 hPa monthly height data.These indices series are used to investigate the seasonal variation and interannual anomaly of polar vortex,along with the relations with global warming,ozone anomaly and Arctic Oscillation (AO).The results show that (1) there is anticyclonic (cyclonic) from Jun.to Aug.(from Sep.to Mar.).The change of spring circulation pattern is slower than that of autumn.(2) S can be replaced by P due to the interannual synchronal variations of the intensity and area for polar vortex.The interannual (interdecadal) variations of P are significant in Jan.(Jul.).(3) The anomalies of system center position in Jan.are more evident than that in Jul.(4) The variations of mean temperature at mid-stratosphere in the vicinity of pole zone in Jan.are different from that in Jul.,but they are synchronal with the corresponding P and not significant correlation with the trend of global warming.However,the relationship between P and total O3 in Jul.are obvious.(5) There is so notable correlation between P and AO that P can represent AO.展开更多
A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the res...A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the resemblance of such an indirectly derived response to one directly forced by Pacific Ocean warming. This is relevant to the additive nonlinearity of atmospheric responses to separated Indian and Pacific Ocean forcing. In the present study, an additional set of ensemble experiments are performed by prescribing isolated SST forcing in the tropical Pacific Ocean to address this issue. The results suggest a qualitative resemblance between responses in the derived and additional experiments. Thus, previous findings about the impact of Indian and Pacific Ocean wanning are robust. This study has important implications for future climate change projections, considering the non-unanimous warming rates in tropical oceans in the 21st century. Nevertheless, a comparison of present direct-forced experiments with previous indirect-forced experiments suggests a significant additive nonlinearity between the Indian and Pacific Ocean warmings. Further diagnosis suggests that the nonlinearity may originate from the thermodynamic processes over the tropics.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.92050116)。
文摘Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.
基金supported by the Science and Technology Program of Sichuan Province, China (Grant No. 23NSFSC1097)。
文摘To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.
基金the National Natural Science Foundation of China(Grant Nos.42130601,42075060,and 41875046).
文摘This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.
基金funded by the National Key Research and Development Program of China[grant number 2022YFE0106800]the National Natural Science Foundation of China[grant number 41730964]the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311021001].
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2009450159)the Foundation of the State Key Laboratory of Optical Technologies for Micro-Frabrication and Micro-Engineering,Chinese Academy of Sciences (Grant No. KF001)
文摘Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871355,61831012,and 62271460)the Talent Project of Zhejiang Provincial Department of Science and Technology,China(Grant No.2018R52043)+1 种基金the Zhejiang Key Research and Development Project of China(Grant Nos.2021C03153 and 2022C03166)the Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.2020YW20)。
文摘We propose a switchable vortex beam polarization state terahertz multi-layer metasurface,which consists of threelayer elliptical metal crosses,four-layer dielectrics,and two-layer hollow metal circles,which are alternately superimposed.Under the normal incidence of left-handed circularly polarized(LCP)wave and the right-handed circularly polarized(RCP)waves,the proposed structure realizes three independent control functions,i.e.,focused and vortex beam,vortex beam with different topological charges,and polarization states switching,and azimuth switching of two vortex beams with different polarization states.The results show that the proposed metasurface provides a new idea for investigating the multifunctional terahertz wave modulation devices.
基金supported by the National Basic Research Program of China (Grant No.2009CB421405)the National Natural Science Foundation of China (Grant Nos. 40775035 and 40730952)
文摘We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper.
文摘The stratospheric polar vortex oscillation (PVO) in the Northern Hemisphere is examined in a semiLagrangian θ-PVLAT coordinate constructed by using daily isentropic potential vorticity maps derived from NCEP/NCAR reanalysis Ⅱdataset covering the period from 1979 to 2003. In the semi-Lagrangian θ-PVLAT coordinate, the variability of the polar vortex is solely attributed to its intensity change because the changes in its location and shape would be naturally absent by following potential vorticity contours on isentropic surfaces. The EOF and regression analyses indicate that the PVO can be described by a pair of poleward and downward propagating modes. These two modes together account for about 82% variance of the daily potential vorticity anomalies over the entire Northern Hemisphere. The power spectral analysis reveals a dominant time scale of about 107 days in the time series of these two modes, representing a complete PVO cycle accompanied with poleward propagating heating anomalies of both positive and negative signs from the equator to the pole. The strong polar vortex corresponds to the arrival of cold anomalies over the polar circle and vice versa. Accompanied with the poleward propagation is a simultaneous downward propagation. The downward propagation time scale is about 20 days in high and low latitudes and about 30 days in mid-latitudes. The zonal wind anomalies lag the poleward and downward propagating temperature anomalies of the opposite sign by 10 days in low and high latitudes and by 20 days in mid-latitudes. The time series of the leading EOF modes also exhibit dominant time scales of 8.7, 16.9, and 33.8 months. They approximately follow a double-periodicity sequence and correspond to the 3-peak extratropical Quasi-Biennial Oscillation (QBO) signal.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175083 and 41275096)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201006020,GYHY201106016,and GYHY201106015)
文摘This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.
基金supported by the Chinese Key Developing Program for Basic Sciences(Grant No. 2010CB950400)the National Natural Science Foundation of China (Grant No. 40705023)
文摘The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to investigate the distinction between early and late SPVB. The results showed that the anomalous circulation signals extending from the stratosphere to the troposphere were reversed before and after early SPVB, while the stratospheric signals were consistent before and after the onset of late SPVB. Arctic Oscillation (AO) evolution during the life cycle of SPVB also demonstrated that the negative AO signal can propagate downward after early SPVB. Such downward AO signals could be identified in both geopotential height and temperature anomalies. After the AO signal reached the lower troposphere, it influenced the Aleutian Low and Siberian High in the troposphere, leading to a weak winter monsoon and large-scale warming at mid latitudes in Asia. Compared to early SPVB, downward propagation was not evident in late SPVB. The high-latitude tropospheric circulation in the Northern Hemisphere was affected by early SPVB, causing it to enter a summer circulation pattern earlier than in late SPVB years.
基金supported by the National Key Basic Research Program of China(Grants No.2010CB428602 and No. 2009CB421401)the Innovative Key Project of the Chinese Academy of Sciences(Grant No.KZCX2-YW-BR-14)the National Natural Science Foundation of China(Grant No.40775053)
文摘During recent decades, the tropical Indo-Pacific Ocean has become increasingly warmer. Meanwhile, both the northern and southern hemispheric polar vortices (NPV and SPV) have exhibited a deepening trend in boreal winter. Although previous studies have revealed that the tropical Indian Ocean warming (IOW) favors an intensifying NPV and a weakening SPV, how the tropical Pacific Ocean warming (POW) influences the NPV and SPV remains unclear. In this study, a comparative analysis has been conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the Northern Hemisphere, the two warmings exerted opposite impacts in boreal winter, in that the IOW intensified the NPV while the POW weakened the NPV. For the Southern Hemisphere, both the IOW and POW warmed the southern polar atmosphere and weakened the SPV. A diagnostic analysis based on the vorticity budget revealed that such an interhemispheric difference in influences from the IOW and POW in boreal winter was associated with different roles of transient eddy momentum flux convergence between the hemispheres. Furthermore, this difference may have been linked to different strengths of stationary wave activity between the hemispheres in boreal winter.
基金supported by the National Basic Research Program of China (Grant Nos2010CB428602 and 2010CB428502)the National Natural Science Foundation of China (Grant No 41005023)the Program for New Century Excellent Talents in University (Grant No NCET-09-0227)
文摘Using 1958-2002 NCEPNCAR reanalysis data, we investigate stationary and transient planetary wave propagation and its role in wave-mean flow interaction which influences the state of the polar vortex (PV) in the stratosphere in Northern Hemisphere (NH) winter. This is done by analyzing the Eliassen-Palm (E-P) flux and its divergence. We find that the stationary and transient waves propagate upward and equatorward in NH winter, with stronger upward propagation of stationary waves from the troposphere to the stratosphere, and stronger equatorward propagation of transient waves from mid-latitudes to the subtropics in the troposphere. Stationary waves exhibit more upward propagation in the polar stratosphere during the weak polar vortex regime (WVR) than during the strong polar vortex regime (SVR). On the other hand, transient waves have more upward propagation during SVR than during WVR in the subpolar stratosphere, with a domain of low frequency waves. With different paths of upward propagation, both stationary and transient waves contribute to the maintenance of the observed stratospheric PV regimes in NH winter.
基金supported by the National Basic Research Program of China under Grants 2010CB428603and2010CB950400100 Talents Program of the Chinese Academy of Sciences under Grant KZCX2-YW-BR-14
文摘<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO coupling relationship exhibits distinct seasonal feature,due to the strong seasonality of PVO and ENSO.Specifically,the PVO variability not only during winter,but also in autumn and spring months,is significantly correlated with ENSO anomalies leading by seasons;however,no significant effect of ENSO is found on the PVO variability in winter months of November and February.Although a significant ENSO effect is primarily observed when ENSO leads PVO by about one year,a significant correlation is also found between PVO in the following spring months (M +1 A +1) and ENSO anomalies in the previous autumn (A-1 S-1 O- 1 N -1) when ENSO anomalies lead by about 18 months.The significant correlation between PVO in various seasons and the corresponding ENSO anomalies leading by seasons could be explicitly verified in most of the individual years,confirming that the lagged ENSO effect can largely modulate the seasonal timescale variability of PVO.Moreover,the composite spatial patterns of the zonal-mean temperature anomalies further show that the ENSO effect on the PVO in various seasons is related to the interannual variability of the seasonal timescale PVO events.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61240057)the Program for New Century Excellent Talentsin University,China(Grant No.NCET-13-0667)the Beijing Excellent Talent Training Project,China(Grant No.2011D005007000008)
文摘Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 60908015)the Beijing Excellent Talent Training Project,China (Grant No. 2011D005007000008)
文摘The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.
基金supported by the National Natural Science Foundation of China(Grant No.60977068)the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(Grant No.SKLST200912)the Overseas Chinese Affairs Office of the State Council(Grant No.lOQZROl)
文摘Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.
基金supported by the National Natural Science Foundation of China [grant numbers 41730964,41575079,and 41421004]
文摘Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.
基金supported by the National Key Technology R&D Program (Grant No.2008BAC48B02)
文摘A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (λc,φc)–indices by use of 1948–2007 NCEP/NCAR 10 hPa monthly height data.These indices series are used to investigate the seasonal variation and interannual anomaly of polar vortex,along with the relations with global warming,ozone anomaly and Arctic Oscillation (AO).The results show that (1) there is anticyclonic (cyclonic) from Jun.to Aug.(from Sep.to Mar.).The change of spring circulation pattern is slower than that of autumn.(2) S can be replaced by P due to the interannual synchronal variations of the intensity and area for polar vortex.The interannual (interdecadal) variations of P are significant in Jan.(Jul.).(3) The anomalies of system center position in Jan.are more evident than that in Jul.(4) The variations of mean temperature at mid-stratosphere in the vicinity of pole zone in Jan.are different from that in Jul.,but they are synchronal with the corresponding P and not significant correlation with the trend of global warming.However,the relationship between P and total O3 in Jul.are obvious.(5) There is so notable correlation between P and AO that P can represent AO.
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration (Grant No. GYHY201006022)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-BR-14 and KZCX2-YW-Q11-03)
文摘A previous modeling study about Pacific Ocean warming derived polar vortex response signals, by subtracting those in the Indian Ocean warming experiments from those in the Indo-Pacific. This approach questions the resemblance of such an indirectly derived response to one directly forced by Pacific Ocean warming. This is relevant to the additive nonlinearity of atmospheric responses to separated Indian and Pacific Ocean forcing. In the present study, an additional set of ensemble experiments are performed by prescribing isolated SST forcing in the tropical Pacific Ocean to address this issue. The results suggest a qualitative resemblance between responses in the derived and additional experiments. Thus, previous findings about the impact of Indian and Pacific Ocean wanning are robust. This study has important implications for future climate change projections, considering the non-unanimous warming rates in tropical oceans in the 21st century. Nevertheless, a comparison of present direct-forced experiments with previous indirect-forced experiments suggests a significant additive nonlinearity between the Indian and Pacific Ocean warmings. Further diagnosis suggests that the nonlinearity may originate from the thermodynamic processes over the tropics.