A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Mete...The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Meteorological Administration(CMA).The dynamic framework of GRAPES is featuring with fully compressible equations,nonhydrostatic or hydrostatic optionally,two-level time semi-Lagrangian and semi-implicit time integration,Charney-Phillips vertical staggering,and complex three-dimensional pre-conditioned Helmholtz solver,etc.Concerning the singularity of horizontal momentum equations at the poles,the polar discretization schemes are described,which include adoption of Arakawa C horizontal grid with ν at poles,incorporation of polar filtering to maintain the computational stability,the correction to Helmholtz equation near the poles,as well as the treatment of semi-Lagrangian interpolation to improve the departure point accuracy,etc.The balanced flow tests validate the rationality of the treatment of semi-Lagrangian departure point calculation and the polar discretization during long time integration.Held and Suarez tests show that the conservation proper-ties of GRAPES model are quite good.展开更多
Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological communit...Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.展开更多
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金Supported by the Ministry of Science and Technology of China (Grant Nos 2006BAC02B01 and 2006BAC03B03)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA01A123)
文摘The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Meteorological Administration(CMA).The dynamic framework of GRAPES is featuring with fully compressible equations,nonhydrostatic or hydrostatic optionally,two-level time semi-Lagrangian and semi-implicit time integration,Charney-Phillips vertical staggering,and complex three-dimensional pre-conditioned Helmholtz solver,etc.Concerning the singularity of horizontal momentum equations at the poles,the polar discretization schemes are described,which include adoption of Arakawa C horizontal grid with ν at poles,incorporation of polar filtering to maintain the computational stability,the correction to Helmholtz equation near the poles,as well as the treatment of semi-Lagrangian interpolation to improve the departure point accuracy,etc.The balanced flow tests validate the rationality of the treatment of semi-Lagrangian departure point calculation and the polar discretization during long time integration.Held and Suarez tests show that the conservation proper-ties of GRAPES model are quite good.
基金Supported by the National Key Research and Development Program of China(2017YFC1501900)Middle-and Long-term Development Strategic Research Project of the Chinese Academy of Engineering(2019-ZCQ-06)。
文摘Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.