The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and t...This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and time-dependent loadings. Two variables are introduced to transform the two-coupled governing equations of pore-water and poreair pressures into an equivalent set of partial differential equations (PDEs), which are solved with the Laplace transform method. The pore-water and pore-air pressures and settlement are obtained in the Laplace transform domMn. The Crump's method is used to perform inverse Laplace transform to obtain the solutions in the time domain. The present solutions are more general in practical applications and show good agreement with the previous solutions in the literature.展开更多
The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with...The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.展开更多
Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditi...Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant;instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation.展开更多
In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on t...In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on the value of a constant of integration. These two types of solutions are analysed from a physical point of view. The comparison with the linear theory limit is also considered. This leads to a new solution, different from the well known one. If one considers the observational data in the weak field limit this new solution is in agreement with the available data. While the traditional Schwarzschild solution is characterized by a horizon at r=2GM/c2, no horizon exists in this new solution.展开更多
This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surface...This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.展开更多
The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ...The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.展开更多
This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore wat...This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.展开更多
Based on the Hellinger-Reissner (H-R) mixed variational principle for piezoelectric material, a unified 4-node Hamiltonian isoparametric element of anisotropy piezoelectric material is established. A new semi-analyt...Based on the Hellinger-Reissner (H-R) mixed variational principle for piezoelectric material, a unified 4-node Hamiltonian isoparametric element of anisotropy piezoelectric material is established. A new semi-analytical solution for the natural vibration of smart laminated plates and the transient response of the laminated cantilever with piezoelectric patch is presented. The major steps of mathematical model are as follows: the piezoelectric layer and host layer of laminated plate are considered as unattached three-dimensional bodies and discretized by the Hamiltonian isoparametric elements. The control equation of whole structure is derived by considering the compatibility of generalized displacements and generalized stresses on the interface between layers. There is no restriction for the side-face geometrical boundaries, the thickness and the number of layers of plate by the use of the present isoparametric element. Present method has wide application area.展开更多
In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By app...In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.展开更多
Based on potential flow theory, a dissipative semi-analytical solution is developed for the wave resonance in the narrow gap between a fixed floating box and a vertical wall by using velocity potential decompositions ...Based on potential flow theory, a dissipative semi-analytical solution is developed for the wave resonance in the narrow gap between a fixed floating box and a vertical wall by using velocity potential decompositions and matched eigenfunction expansions. The energy dissipation near the box is modelled in the potential flow solution by introducing a quadratic pressure loss condition on the gap entrance. Such a treatment is inspired by the classical local head loss formula for the sudden change of cross section in channel flow, where the energy dissipation is assumed to be proportional to the square of local velocity for high Reynolds number flows. The dimensionless energy loss coefficient is calibrated based on experimental data. And it is found to be insensitive to the incident wave height and wave frequency. With the calibrated energy loss coefficient, the resonant wave height in gap and the reflection coefficient are calculated by the present dissipative semi-analytical solution. The predictions are in good agreement with experimental data. Case studies suggest that the maximum relative energy dissipation occurs near the resonant frequency, which leads to the minimum reflection coefficient. The horizontal wave forces on the box and the vertical wall attain also maximum values near the resonant frequency, while the vertical wave force on the box decreases abruptly there to a small value.展开更多
A theoretical analysis on the electric double layer formed near the surface of an infinite cylinder with an elliptical cross section and a prescribed electric potential in an ionic conductor was performed using the li...A theoretical analysis on the electric double layer formed near the surface of an infinite cylinder with an elliptical cross section and a prescribed electric potential in an ionic conductor was performed using the linearized Gouy–Chapman theory. A semi-analytical solution in terms of the Mathieu functions was obtained. The distributions of the electric potential, cations, anions, and electric field were calculated. The effects of various physical and geometric parameters were examined. The fields vary rapidly near the elliptical boundary and are nearly uniform at far field. Electric field concentrations were found at the ends of the semi-major and semi-minor axes of the ellipse. These concentrations are sensitive to the physical and geometric parameters.展开更多
Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduce...Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numerical example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.展开更多
Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.How...Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.However,the heat release from in-situ and migrated water in the freezing zone could result in some numerical instability,so the simulation of frost fringe is not ideal.In this study,a semi-analytical solution is developed for frost heave prediction of clay soil.The prediction results to the two tests with different freezing mode with clay soil agree well with the tested behavior,which indicates the feasibility of the solution.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v....Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v. infusion of 1000 ml of lactated Ringer's solution over 60 min was studied in patients undergoing general (n=31) and epidural (n= 22) anesthesia. Heart rate, arterial blood pressure and hemoglobin (Hb) concentration were measured every 5 rain during the study. Surgery was not started until the study period had been completed. Results: General anesthesia caused the greater decrease of mean arterial blood pressure (MAP) (mean 15% versus 9%; P〈0.01) and thereby followed by a more pronounced plasma dilution, blood volume expansion (VE) and blood volume expansion efficiency (VEE). A strong linear correlation between hemodilution and the reduction in MAP (r=-0.50;P〈0.01) was found. At the end of infusion, patients undergoing general anesthesia retained 47% (SD 19%) of the infused fluid in the circulation, while epidural anesthesia retained 29% (SD 13%) (P〈0.001). Correspondingly, a fewer urine output (mean 89 ml versus 156 ml; P〈0.05) and extravascular expansion (454 ml versus 551 ml; P〈0.05) were found during general anesthesia. Conclusion: We concluded that the induction of general anesthesia caused more hemodilution, volume expansion and volume expansion efficiency than epidural anesthesia, which was triggered only by the lower MAP.展开更多
First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the gener...First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.展开更多
A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic w...A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.展开更多
A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution ...A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape trans lating along the direction normal to it in an unbounded fluid. The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the ve locity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and ellip tic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.展开更多
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
基金Project supported by the National Natural Science Foundation of China(Nos.41372279 and41630633)
文摘This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and time-dependent loadings. Two variables are introduced to transform the two-coupled governing equations of pore-water and poreair pressures into an equivalent set of partial differential equations (PDEs), which are solved with the Laplace transform method. The pore-water and pore-air pressures and settlement are obtained in the Laplace transform domMn. The Crump's method is used to perform inverse Laplace transform to obtain the solutions in the time domain. The present solutions are more general in practical applications and show good agreement with the previous solutions in the literature.
文摘The main aim of this paper is to obtain the exact and semi-analytical solutions of the nonlinear Klein-Fock-Gordon(KFG)equation which is a model of relativistic electrons arising in the laser thermonuclear fusion with beta derivative.For this purpose,both the modified extended tanh-function(mETF)method and the homotopy analysis method(HAM)are used.While applying the mETF the chain rule for beta derivative and complex wave transform are used for obtaining the exact solution.The advantage of this procedure is that discretization or normalization is not required.By applying the mETF,the exact solutions are obtained.Also,by applying the HAM semi-analytical results for the considered equation are acquired.In HAM?curve gives us a chance to find the suitable value of the for the convergence of the solution series.Also,comparative graphical representations are given to show the effectiveness,reliability of the methods.The results show that the m ETF and HAM are reliable and applicable tools for obtaining the solutions of non-linear fractional partial differential equations that involve beta derivative.This study can bring a new perspective for studies on fractional differential equations.On the other hand,it can be said that scientists can apply the considered methods for different mathematical models arising in physics,chemistry,engineering,social sciences and etc.which involves fractional differentiation.Briefly the results may cause a new insight who studies on relativistic electron modelling.
文摘Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant;instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation.
文摘In this article, we address the solution of the Einstein’s equations in the vacuum region surrounding a spherically symmetric mass distribution. There are two different types of mathematical solutions, depending on the value of a constant of integration. These two types of solutions are analysed from a physical point of view. The comparison with the linear theory limit is also considered. This leads to a new solution, different from the well known one. If one considers the observational data in the weak field limit this new solution is in agreement with the available data. While the traditional Schwarzschild solution is characterized by a horizon at r=2GM/c2, no horizon exists in this new solution.
文摘This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.
基金Project supported by the National Natural Science Foundation of China(Nos.41630633 and11672172)
文摘The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.
基金The financial support from National Natural Science Foundation of China (Grant Nos. 12172211 and 52078021)Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, China (Grant No. R201904)
文摘This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.
基金Project supported by the National Natural Science Foundation of China (No. 10072038)
文摘Based on the Hellinger-Reissner (H-R) mixed variational principle for piezoelectric material, a unified 4-node Hamiltonian isoparametric element of anisotropy piezoelectric material is established. A new semi-analytical solution for the natural vibration of smart laminated plates and the transient response of the laminated cantilever with piezoelectric patch is presented. The major steps of mathematical model are as follows: the piezoelectric layer and host layer of laminated plate are considered as unattached three-dimensional bodies and discretized by the Hamiltonian isoparametric elements. The control equation of whole structure is derived by considering the compatibility of generalized displacements and generalized stresses on the interface between layers. There is no restriction for the side-face geometrical boundaries, the thickness and the number of layers of plate by the use of the present isoparametric element. Present method has wide application area.
文摘In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51725903, 51490675 and 51490673)the Taishan Scholar Project of Shandong Province (Grant No. ts20190915)。
文摘Based on potential flow theory, a dissipative semi-analytical solution is developed for the wave resonance in the narrow gap between a fixed floating box and a vertical wall by using velocity potential decompositions and matched eigenfunction expansions. The energy dissipation near the box is modelled in the potential flow solution by introducing a quadratic pressure loss condition on the gap entrance. Such a treatment is inspired by the classical local head loss formula for the sudden change of cross section in channel flow, where the energy dissipation is assumed to be proportional to the square of local velocity for high Reynolds number flows. The dimensionless energy loss coefficient is calibrated based on experimental data. And it is found to be insensitive to the incident wave height and wave frequency. With the calibrated energy loss coefficient, the resonant wave height in gap and the reflection coefficient are calculated by the present dissipative semi-analytical solution. The predictions are in good agreement with experimental data. Case studies suggest that the maximum relative energy dissipation occurs near the resonant frequency, which leads to the minimum reflection coefficient. The horizontal wave forces on the box and the vertical wall attain also maximum values near the resonant frequency, while the vertical wave force on the box decreases abruptly there to a small value.
基金supported by the National Natural Science Foundation of China (Grants 11502108 and 11232007)the Program for New Century Excellent Talents in Universities (Grant NCET-12-0625)+2 种基金the Natural Science Foundation of Jiangsu Province (Grant BK20140037)the Fundamental Research Funds for Central Universities (Grant NE2013101)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘A theoretical analysis on the electric double layer formed near the surface of an infinite cylinder with an elliptical cross section and a prescribed electric potential in an ionic conductor was performed using the linearized Gouy–Chapman theory. A semi-analytical solution in terms of the Mathieu functions was obtained. The distributions of the electric potential, cations, anions, and electric field were calculated. The effects of various physical and geometric parameters were examined. The fields vary rapidly near the elliptical boundary and are nearly uniform at far field. Electric field concentrations were found at the ends of the semi-major and semi-minor axes of the ellipse. These concentrations are sensitive to the physical and geometric parameters.
基金National Natural Science Foundation of China (50574097 90305023)
文摘Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numerical example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.
基金supported by the National Natural Science Foundation of China (No.41371090,No.41023003,No.40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (SKLFSE-ZT-08)
文摘Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.However,the heat release from in-situ and migrated water in the freezing zone could result in some numerical instability,so the simulation of frost fringe is not ideal.In this study,a semi-analytical solution is developed for frost heave prediction of clay soil.The prediction results to the two tests with different freezing mode with clay soil agree well with the tested behavior,which indicates the feasibility of the solution.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
基金Project (No. 20051899) supported by Office of Education of Zheji-ang Province, China
文摘Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v. infusion of 1000 ml of lactated Ringer's solution over 60 min was studied in patients undergoing general (n=31) and epidural (n= 22) anesthesia. Heart rate, arterial blood pressure and hemoglobin (Hb) concentration were measured every 5 rain during the study. Surgery was not started until the study period had been completed. Results: General anesthesia caused the greater decrease of mean arterial blood pressure (MAP) (mean 15% versus 9%; P〈0.01) and thereby followed by a more pronounced plasma dilution, blood volume expansion (VE) and blood volume expansion efficiency (VEE). A strong linear correlation between hemodilution and the reduction in MAP (r=-0.50;P〈0.01) was found. At the end of infusion, patients undergoing general anesthesia retained 47% (SD 19%) of the infused fluid in the circulation, while epidural anesthesia retained 29% (SD 13%) (P〈0.001). Correspondingly, a fewer urine output (mean 89 ml versus 156 ml; P〈0.05) and extravascular expansion (454 ml versus 551 ml; P〈0.05) were found during general anesthesia. Conclusion: We concluded that the induction of general anesthesia caused more hemodilution, volume expansion and volume expansion efficiency than epidural anesthesia, which was triggered only by the lower MAP.
文摘First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.
文摘A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.
基金supported by the National Natural Science Foundation of China(11102171)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-13-0973)
文摘A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape trans lating along the direction normal to it in an unbounded fluid. The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the ve locity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and ellip tic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.