The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteri...By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Secchi depth(SD,m)is a direct and intuitive measure of water's transparency,which is also an indicator of water quality.In 2015,a semi-analytical model was developed to derive SD from remote sensing reflectance,th...Secchi depth(SD,m)is a direct and intuitive measure of water's transparency,which is also an indicator of water quality.In 2015,a semi-analytical model was developed to derive SD from remote sensing reflectance,thus able to provide maps of water's transparency in satellite images.Here an in-situ dataset(338 stations)is used to evaluate its potential ability to monitor water quality in the coastal and estuarine waters,with measurements covering the Zhujiang(Pearl)River Estuary,the Yellow Sea and the East China Sea where measured SD values span a range of 0.2–21.0 m.As a preliminary validation result,according to the whole dataset,the unbiased percent difference(UPD)between estimated and measured SD is 23.3%(N=338,R^2=0.89),with about 60%of stations in the dataset having relative difference(RD)≤20%,over 80%of stations having RD≤40%.Furthermore,by excluding the field data which with relatively larger uncertainties,the semi-analytical model yielded the UPD of 17.7%(N=132,R^2=0.92)with SD range of 0.2–11.0 m.In addition,the semi-analytical model was applied to Landsat-8 images in the Zhujiang River Estuary,and retrieved high-quality mapping and reliable spatial-temporal patterns of water clarity.Taking into account the uncertainties associated with both field measurements and satellite data processing,and that there were no tuning of the semi-analytical model for these regions,these findings indicate highly robust retrieval of SD from spectral techniques for such turbid coastal and estuarine waters.The results suggest it is now possible to routinely monitor coastal water transparency or visibility at high-spatial resolutions from measurements,like Landsat-8 and Sentinel-2 and newly launched Gaofen-5.展开更多
Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the inte...Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant h...The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant heaving at the ground surface,which should be considered in advance.However,the complex processes during ice lens formation are still not fully understood and difficult to capture in a simple approach.In the past,the semi-analytical approach of Konrad and Morgenstern used one soil constant,the“segregation potential(SP)”.It has been mainly and most successfully applied to the heave calculation of natural-induced soil freezing in cold regions.Its application to AGF has been so far unsuccessful.To solve this,a new semi-analytical approach is presented in this paper.It includes AGF conditions such as bottom-up freezing,temperature gradients to reach great freezing velocities,and a distinction between two freezing states.One is the freezing-up state until a certain frost body thickness is reached(thermal transient state),and the other is a holding phase where the frost body thickness is kept constant(thermal quasi-steady state).To test its ability,the results are applied to another freezing direction,the top-down freezing.The new approach is validated using two different frost-susceptible soils and,in total,50 frost heave tests.In the thermal transient region,where the SP is applicable,the two semi-analytical approaches are compared,showing improved performance of the current method by about 15%.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still...BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.展开更多
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind−Magnetosphere−Ionosphere Link Explorer(SMILE)will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnectio...Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind−Magnetosphere−Ionosphere Link Explorer(SMILE)will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnection modes under various solar wind conditions after their respective launches in 2024 and 2025.Magnetosheath conditions,namely,plasma density,velocity,and temperature,are key parameters for predicting and analyzing soft X-ray images from the LEXI and SMILE missions.We developed a userfriendly model of magnetosheath that parameterizes number density,velocity,temperature,and magnetic field by utilizing the global Magnetohydrodynamics(MHD)model as well as the pre-existing gas-dynamic and analytic models.Using this parameterized magnetosheath model,scientists can easily reconstruct expected soft X-ray images and utilize them for analysis of observed images of LEXI and SMILE without simulating the complicated global magnetosphere models.First,we created an MHD-based magnetosheath model by running a total of 14 OpenGGCM global MHD simulations under 7 solar wind densities(1,5,10,15,20,25,and 30 cm)and 2 interplanetary magnetic field Bz components(±4 nT),and then parameterizing the results in new magnetosheath conditions.We compared the magnetosheath model result with THEMIS statistical data and it showed good agreement with a weighted Pearson correlation coefficient greater than 0.77,especially for plasma density and plasma velocity.Second,we compiled a suite of magnetosheath models incorporating previous magnetosheath models(gas-dynamic,analytic),and did two case studies to test the performance.The MHD-based model was comparable to or better than the previous models while providing self-consistency among the magnetosheath parameters.Third,we constructed a tool to calculate a soft X-ray image from any given vantage point,which can support the planning and data analysis of the aforementioned LEXI and SMILE missions.A release of the code has been uploaded to a Github repository.展开更多
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金Project supported by the National Natural Science Foundation of China (No. 12272087)。
文摘By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金The National Natural Science Foundation of China under contract No.61527810the Marine Science and Technology Fund from Director of South China Sea Branch+1 种基金State Oceanic Administration of China under contract No.180101the Key Laboratory Open Project Fund of Technology and Application for Safeguarding of Marine Rights and Interests,State Oceanic Administration of China under contract No.1720。
文摘Secchi depth(SD,m)is a direct and intuitive measure of water's transparency,which is also an indicator of water quality.In 2015,a semi-analytical model was developed to derive SD from remote sensing reflectance,thus able to provide maps of water's transparency in satellite images.Here an in-situ dataset(338 stations)is used to evaluate its potential ability to monitor water quality in the coastal and estuarine waters,with measurements covering the Zhujiang(Pearl)River Estuary,the Yellow Sea and the East China Sea where measured SD values span a range of 0.2–21.0 m.As a preliminary validation result,according to the whole dataset,the unbiased percent difference(UPD)between estimated and measured SD is 23.3%(N=338,R^2=0.89),with about 60%of stations in the dataset having relative difference(RD)≤20%,over 80%of stations having RD≤40%.Furthermore,by excluding the field data which with relatively larger uncertainties,the semi-analytical model yielded the UPD of 17.7%(N=132,R^2=0.92)with SD range of 0.2–11.0 m.In addition,the semi-analytical model was applied to Landsat-8 images in the Zhujiang River Estuary,and retrieved high-quality mapping and reliable spatial-temporal patterns of water clarity.Taking into account the uncertainties associated with both field measurements and satellite data processing,and that there were no tuning of the semi-analytical model for these regions,these findings indicate highly robust retrieval of SD from spectral techniques for such turbid coastal and estuarine waters.The results suggest it is now possible to routinely monitor coastal water transparency or visibility at high-spatial resolutions from measurements,like Landsat-8 and Sentinel-2 and newly launched Gaofen-5.
基金The authors gratefully acknowledge the financial support by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Natural Science Foundation of Beijing,China(Grant No.8202037).
文摘Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金supported by the German Research Foundation(DFG)under the project“Investigation and calculation of frost heave considering specific boundary conditions of ground freezing”(Grant No.409760547).
文摘The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant heaving at the ground surface,which should be considered in advance.However,the complex processes during ice lens formation are still not fully understood and difficult to capture in a simple approach.In the past,the semi-analytical approach of Konrad and Morgenstern used one soil constant,the“segregation potential(SP)”.It has been mainly and most successfully applied to the heave calculation of natural-induced soil freezing in cold regions.Its application to AGF has been so far unsuccessful.To solve this,a new semi-analytical approach is presented in this paper.It includes AGF conditions such as bottom-up freezing,temperature gradients to reach great freezing velocities,and a distinction between two freezing states.One is the freezing-up state until a certain frost body thickness is reached(thermal transient state),and the other is a holding phase where the frost body thickness is kept constant(thermal quasi-steady state).To test its ability,the results are applied to another freezing direction,the top-down freezing.The new approach is validated using two different frost-susceptible soils and,in total,50 frost heave tests.In the thermal transient region,where the SP is applicable,the two semi-analytical approaches are compared,showing improved performance of the current method by about 15%.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
基金Supported by the Project of NINGBO Leading Medical Health Discipline,No.2022-B11Ningbo Natural Science Foundation,No.202003N4206Public Welfare Foundation of Ningbo,No.2021S108.
文摘BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金supported by the NSF grant AGS-1928883the NASA grants,80NSSC20K1670 and 80MSFC20C0019+2 种基金support from NASA GSFC IRADHIFISFM funds。
文摘Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind−Magnetosphere−Ionosphere Link Explorer(SMILE)will observe magnetosheath and its boundary motion in soft X-rays for understanding magnetopause reconnection modes under various solar wind conditions after their respective launches in 2024 and 2025.Magnetosheath conditions,namely,plasma density,velocity,and temperature,are key parameters for predicting and analyzing soft X-ray images from the LEXI and SMILE missions.We developed a userfriendly model of magnetosheath that parameterizes number density,velocity,temperature,and magnetic field by utilizing the global Magnetohydrodynamics(MHD)model as well as the pre-existing gas-dynamic and analytic models.Using this parameterized magnetosheath model,scientists can easily reconstruct expected soft X-ray images and utilize them for analysis of observed images of LEXI and SMILE without simulating the complicated global magnetosphere models.First,we created an MHD-based magnetosheath model by running a total of 14 OpenGGCM global MHD simulations under 7 solar wind densities(1,5,10,15,20,25,and 30 cm)and 2 interplanetary magnetic field Bz components(±4 nT),and then parameterizing the results in new magnetosheath conditions.We compared the magnetosheath model result with THEMIS statistical data and it showed good agreement with a weighted Pearson correlation coefficient greater than 0.77,especially for plasma density and plasma velocity.Second,we compiled a suite of magnetosheath models incorporating previous magnetosheath models(gas-dynamic,analytic),and did two case studies to test the performance.The MHD-based model was comparable to or better than the previous models while providing self-consistency among the magnetosheath parameters.Third,we constructed a tool to calculate a soft X-ray image from any given vantage point,which can support the planning and data analysis of the aforementioned LEXI and SMILE missions.A release of the code has been uploaded to a Github repository.
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.