The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ...The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.展开更多
This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and t...This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and time-dependent loadings. Two variables are introduced to transform the two-coupled governing equations of pore-water and poreair pressures into an equivalent set of partial differential equations (PDEs), which are solved with the Laplace transform method. The pore-water and pore-air pressures and settlement are obtained in the Laplace transform domMn. The Crump's method is used to perform inverse Laplace transform to obtain the solutions in the time domain. The present solutions are more general in practical applications and show good agreement with the previous solutions in the literature.展开更多
This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore wat...This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.展开更多
In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role ...In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role in determining flow dynamics and the resulting formation deformation.Existing models of the wellbore skin zone generally assume a constant permeability throughout,resulting in a sharp permeability discontinuity at the skin-reservoir interface.This paper introduces a model for a wellbore with a continuously graded skin zone of finite thickness within a poroelastic medium.Analytical solutions are derived using the Laplace transform method,addressing both positive and negative skin zones.Numerical results are presented to illustrate the effects of graded permeability/skin zone thickness on pore pressures and stresses around a wellbore.The results highlight a distinct divergence in stress and pore pressure fields when comparing wellbores with negative skin zones to those with positive skin zones or no skin at all.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ...On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].展开更多
This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of inte...This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.展开更多
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typic...Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.展开更多
For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u...For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.展开更多
Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)...Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)≡0(mod n)with x_(1),…,x_(m)∈Z_(n)^(x).In this note,we determine an explicit expression of N_(m)(n).This extends the results of Sun and Yang in 2014.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.41630633 and11672172)
文摘The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.
基金Project supported by the National Natural Science Foundation of China(Nos.41372279 and41630633)
文摘This paper presents general semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation equations for unsaturated soils subject to different initial conditions, homogeneous boundaries and time-dependent loadings. Two variables are introduced to transform the two-coupled governing equations of pore-water and poreair pressures into an equivalent set of partial differential equations (PDEs), which are solved with the Laplace transform method. The pore-water and pore-air pressures and settlement are obtained in the Laplace transform domMn. The Crump's method is used to perform inverse Laplace transform to obtain the solutions in the time domain. The present solutions are more general in practical applications and show good agreement with the previous solutions in the literature.
基金The financial support from National Natural Science Foundation of China (Grant Nos. 12172211 and 52078021)Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, China (Grant No. R201904)
文摘This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.
基金the financial support from Shaanxi Key Research and Development Program under Grant No.2023-YBGY-058the Fundamental Research Funds for the Central Universities under Grant No.G2020KY05312.
文摘In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role in determining flow dynamics and the resulting formation deformation.Existing models of the wellbore skin zone generally assume a constant permeability throughout,resulting in a sharp permeability discontinuity at the skin-reservoir interface.This paper introduces a model for a wellbore with a continuously graded skin zone of finite thickness within a poroelastic medium.Analytical solutions are derived using the Laplace transform method,addressing both positive and negative skin zones.Numerical results are presented to illustrate the effects of graded permeability/skin zone thickness on pore pressures and stresses around a wellbore.The results highlight a distinct divergence in stress and pore pressure fields when comparing wellbores with negative skin zones to those with positive skin zones or no skin at all.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金Supported by the National Natural Science Foundation of China(12261023,11861023)the Foundation of Science and Technology project of Guizhou Province of China([2018]5769-05)。
文摘On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].
文摘This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.
基金supported by the NSFC(12261107)Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007).
文摘For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.
基金Supported by the Natural Science Foundation of Henan Province(232300420123)the National Natural Science Foundation of China(12026224)。
文摘Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)≡0(mod n)with x_(1),…,x_(m)∈Z_(n)^(x).In this note,we determine an explicit expression of N_(m)(n).This extends the results of Sun and Yang in 2014.