期刊文献+
共找到11,900篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated Hydrological Modeling of the Godavari River Basin in Maharashtra Using the SWAT Model: Streamflow Simulation and Analysis
1
作者 Pallavi Saraf Dattatray Gangaram Regulwar 《Journal of Water Resource and Protection》 CAS 2024年第1期17-26,共10页
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M... Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region. 展开更多
关键词 Soil and Water Assessment Tool (SWAT) Streamflow hydrological Modeling RAINFALL RUNOFF
下载PDF
Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India
2
作者 Suchitra PANDEY Geetilaxmi MOHAPATRA Rahul ARORA 《Regional Sustainability》 2024年第2期103-122,共20页
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t... Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions. 展开更多
关键词 Climate change Generalized additive model(GAM) Depth to groundwater level(DGWL) Climatic and anthropogenic variables Arid and semi-arid regions
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
3
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled Model Intercomparison Project 6(CMIP6) MIKE SHE(Système hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
基于Hydrology的山区1:1万DEM水系提取研究 被引量:5
4
作者 安祺 杨霏 +2 位作者 陈丹 杨霜霜 任苏敏 《重庆工商大学学报(自然科学版)》 2012年第11期87-92,共6页
利用重庆市万州区4幅比例尺为1∶1万,地面分辨率为5 m的DEM数据,根据地表径流模型原理,通过ArcGIS中的HydrologyTools模块进行D8算法提取流域水系,计算汇流累积量,并最终生成河网。结果表明:对1∶1万DEM进行水系提取,最小水道集水面积... 利用重庆市万州区4幅比例尺为1∶1万,地面分辨率为5 m的DEM数据,根据地表径流模型原理,通过ArcGIS中的HydrologyTools模块进行D8算法提取流域水系,计算汇流累积量,并最终生成河网。结果表明:对1∶1万DEM进行水系提取,最小水道集水面积阈值设定为50 000个栅格较合理;对于山地地形,基于1∶1万DEM数据,利用ArcGIS Hydrology模块提取河网的方法,从提取的效率和结果的精度两方面看来都是切实可行的。 展开更多
关键词 数字高程模型 水系提取 hydrology 万州区
下载PDF
基于MCR模型与Hydrology扩展模块的建设用地适宜扩张路径研究 被引量:3
5
作者 杨俊 易洁 +1 位作者 李争 李万钰 《国土资源科技管理》 2020年第4期24-36,共13页
随着城市化进程的不断加快,建设用地扩张迅速,不合理的城市扩展模式会干扰区域经济与生态之间的协调发展,引发资源利用不合理、生态环境恶化等负面效应。利用移动窗口法、MCR模型、Hydrology扩展模块相结合,得到武汉市适宜扩张路径、生... 随着城市化进程的不断加快,建设用地扩张迅速,不合理的城市扩展模式会干扰区域经济与生态之间的协调发展,引发资源利用不合理、生态环境恶化等负面效应。利用移动窗口法、MCR模型、Hydrology扩展模块相结合,得到武汉市适宜扩张路径、生态安全路径,为未来城市规划提供了借鉴。结果表明:(1)适宜建设区(适宜扩张区、优化建设区)所占比例达60.59%,说明目前城市发展格局较为合理;(2)不同的适宜性分区对于建设活动的要求不同,适宜建设区域可引导进行建设开发活动,禁止建设区、生态恢复区应设立相关政策,严禁开发;(3)“山谷线”作为建设用地的适宜扩展路径,“山脊线”作为生态安全路径,可避免建设用地盲目扩张,为城市建设指明了方向;(4)生态关键点对于维护城市的生态安全至关重要,应制定相关措施,进行有效管理。 展开更多
关键词 MCR模型 hydrology扩展模块 适宜扩张路径 武汉市
下载PDF
Present and future of hydrology 被引量:9
6
作者 Xiao-fang RUI Ning-ning LIU +1 位作者 Qiao-ling LI Xiao LIANG 《Water Science and Engineering》 EI CAS CSCD 2013年第3期241-249,共9页
The complexities of hydrological phenomena, the causes that lead to these complexities, and the essences and defects of reductionism are analyzed. The driving forces for the development of hydrology and the formation ... The complexities of hydrological phenomena, the causes that lead to these complexities, and the essences and defects of reductionism are analyzed. The driving forces for the development of hydrology and the formation of branch subjects of hydrology are discussed. The theoretical basis and limitations of existing hydrology are summarized. Existing misunderstandings in the development of the watershed hydrological model are put forward. Finally, the necessity of the expansion of hydrology from linear to nonlinear is discussed. 展开更多
关键词 hydrological phenomenon hydrological theory hydrological method hydrologicalmodel REDUCTIONISM nonlinear
下载PDF
Hydrology and water resources variation and its response to regional climate change in Xinjiang 被引量:17
7
作者 XU Changchun CHEN Yaning +2 位作者 YANG Yuhui HAO Xingming SHEN Yongping 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期599-612,共14页
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-... Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle. 展开更多
关键词 hydrology and water resources climate change XINJIANG
下载PDF
IMPORTANCE OF HYDROLOGY, SOIL AND VEGETATIONIN WETLAND RESEARCH 被引量:4
8
作者 Elizabeth J.Johnson Peter L.M.Veneman XING Baos-han 《湿地科学》 CSCD 2003年第2期128-135,共8页
Wetlands, one of the most productive systems in the biosphere are a unique ecosystem. They occur in landscapes that favor the ponding or slow runoff of surface water, discharge of ground water, or both. Wetlands are n... Wetlands, one of the most productive systems in the biosphere are a unique ecosystem. They occur in landscapes that favor the ponding or slow runoff of surface water, discharge of ground water, or both. Wetlands are not only important for maintaining plant and animal diversity, but also for balancing global carbon budget via sequestrating or releasing CO2 from/into atmosphere depending on their management. Therefore, it is imperative to understand how wetlands form and function, then we can better manage, utilize, and protect these unique ecosystems. Hydrie soils,hydrophytic vegetation, and wetland hydrology are the three main parameters of wetlands. These parameters are interrelated with each other which jointly influence the development and functions of wetland ecosystems. The objective of this paper was to report the current understanding of wetlands and provide future research directions. The paper will first focus on aspects of hydrology research in wetlands, and then shift to soil hydrosequence and wetland vegetation to better understand processes, structure, and function of wetlands, and conclude with some possible future research directions. 展开更多
关键词 hydric soils VEGETATION hydrology WETLANDS future research
下载PDF
Important progress on the use of isotope techniques and methods in catchment hydrology 被引量:4
9
作者 JinKui Wu 1,2, YongJian Ding 1, BaiSheng Ye 1, QiYue Yang 3, Zhi Wei 1 1. Key Laboratory of Ecological Hydrology and Basin Sciences in Cold and Arid Regions Environmental and Engineering Re-search Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. 2. Institute for Landscape Ecology and Resources Management, Justus-Liebig-University Giessen, Giessen 35392, Germany. 3. College of Earth and Environmental Science, Lanzhou University, Lanzhou, Gansu 730000, China. 《Research in Cold and Arid Regions》 2009年第3期207-214,共8页
The use of isotope techniques and methods in catchment hydrology in the last 50 years has generated two major types of progress: (1) Assessment of the temporal variations of the major stocks and flows of water in catc... The use of isotope techniques and methods in catchment hydrology in the last 50 years has generated two major types of progress: (1) Assessment of the temporal variations of the major stocks and flows of water in catchments, from which the estimation of wa-ter residence times is introduced in this paper. (2) Assessment of catchment hydrologic processes, in which the interactions be-tween different waters, hydrographical separation, and bio-geochemical process are described by using isotopes tracers. Future progress on isotope techniques and methods in hydrology is toward the understanding of the hydrological process in large river basins. Much potential also waits realization in terms of how isotope information may be used to calibrate and test distributed rainfall-runoff models and regarding aid in the quantification of sustainable water resources management. 展开更多
关键词 ISOTOPE hydrological process CATCHMENT PROGRESS
下载PDF
Karst caves and hydrology between geodesy and archeology:Field trip notes 被引量:2
10
作者 Carla Braitenberg Tommaso Pivetta +2 位作者 Giuliana Rossi Paola Ventura Ambra Betic 《Geodesy and Geodynamics》 2018年第3期262-269,共8页
The Geodynamics-Earth-Tides-meeting-2016 was held in the Karst, the origin of geologic karst- formation. Surface-rivers are absent, and water flows in channels over distances of 30 km, forming subsurface caves. Geodet... The Geodynamics-Earth-Tides-meeting-2016 was held in the Karst, the origin of geologic karst- formation. Surface-rivers are absent, and water flows in channels over distances of 30 km, forming subsurface caves. Geodetic observations allow detecting caves and sense hydrologic flow. The Karst water had been recognized before Romans as provision for man and livestock. Proto-historic remains near the mouth of the underground river suggest the water outpouring from the Karst was associated with deities to be worshiped. Here the geodetic and cultural aspects of the Karst are summarized, illustrating the field trip that had been offered to the participants. 展开更多
关键词 Karst springs ARCHEOLOGY hydrology TILTMETER
下载PDF
Aspects of forest restoration and hydrology:the hydrological function of litter 被引量:4
11
作者 Luara Castilho Pereira Leonardo Balbinot +2 位作者 Marcelle Teodoro Lima Julieta Bramorski Kelly Cristina Tonello 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期543-552,共10页
Although forests play important roles in the hydrological cycle,there is little information that relates the water retention capacity of litter in areas under passive restoration,especially in Cerrado savannas.This st... Although forests play important roles in the hydrological cycle,there is little information that relates the water retention capacity of litter in areas under passive restoration,especially in Cerrado savannas.This study relates litter levels to water holding capacity and effective water retention among forest fragments under different passive restoration stages:46,11,and 8 years to better understand litter hydrological functions in the Cerrado.Water retention capacity and effective water retention capacity of litters(unstructured materials,branches and leaves)in the field were monitored on a monthly basis.Total litter accumulation at 46 years was significantly higher than that of the other succession stages.Unstructured litter mass was significantly higher than that of leaves and branches.The 46-year stage had the highest water holding capacity in the leaf fraction,followed by unstructured material and branches.Although the water holding capacity was lower in the oldest resto-ration,this site showed the highest efficiency under field conditions.The process was quickly reestablished,as the 11-year restoration showed results closer to that for the 46-year stage in comparison to the area at 8 years.Thus,passive restoration plays a key role in soil water mainte-nance due to the influence of litter in Cerrado savannas.Deforestation and the imminent need of restoring degraded sites,highlight the need for further studies focused on bet-ter understanding of the process of forest restoration and its temporal effect on soil water recovery dynamics. 展开更多
关键词 Forest hydrology Litter interception STEMFLOW CERRADO Águas Perenes Forest Water holding capacity
下载PDF
Assessing the Hydrology of a Data-Scarce Tropical Watershed Using the Soil and Water Assessment Tool: Case of the Little Ruaha River Watershed in Iringa, Tanzania 被引量:1
12
作者 Winfred B. Mbungu Japhet J. Kashaigili 《Open Journal of Modern Hydrology》 2017年第2期65-89,共25页
The hydrology of the Little Ruaha River which is a major catchment of the Ihemi Cluster in the Southern Agricultural Growth Corridor of Tanzania (SA-GCOT) has been studied. The study focused on the hydrological assess... The hydrology of the Little Ruaha River which is a major catchment of the Ihemi Cluster in the Southern Agricultural Growth Corridor of Tanzania (SA-GCOT) has been studied. The study focused on the hydrological assessment through analysis of the available data and developing a model that could be used for assessing impacts of environmental change. Pressures on land and water resources in the watershed are increasing mainly as a result of human activities, and understanding the hydrological regime is deemed necessary. In this study, modeling was conducted using the Soil and Water Assessment Tool (SWAT) in which meteorological and streamflow data were used in the simulation, calibration and evaluation. Calibration and evaluation was done at three gauging stations and the results were deemed plausible with NSE ranging between 0.64 and 0.80 for the two stages. The simulated flows were used for gap filling the missing data and generation of complete daily time series of streamflow at three gauging stations of Makalala, Ihimbu and Mawande. Results of statistical trends and flow duration curves, revealed decline in magnitudes of seasonal and annual flows indicating that streamflows are changing with time and may have implications on envisioned development and the water dependent ecosystems. 展开更多
关键词 hydrology LITTLE Ruaha ANTHROPOGENIC Activities SWAT-CUP
下载PDF
Variation Trends of Hydrology and Water Resources in Yangtze River Delta Region,China and Its Responses to Climate Change 被引量:3
13
作者 XU Nai-zheng LIU Hong-ying WEI Feng 《Meteorological and Environmental Research》 2012年第6期13-16,共4页
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta... Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China. 展开更多
关键词 Climate change hydrology and water resources Yangtze River Delta region China China
下载PDF
Plastic-film-side seeding,as an alternative to traditional film mulching,improves yield stability and income in maize production in semi-arid regions 被引量:2
14
作者 ZHANG Bing-chao HU Han +6 位作者 GUO Zheng-yu GONG Shuai SHEN Si LIAO Shu-hua WANG Xin ZHOU Shun-li ZHANG Zhong-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1021-1034,共14页
Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and addi... Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and additional labor during the“seedling release”in spring maize production,we have developed a plastic-film-side seeding(PSS)technology with the supporting machinery.In the semi-arid regions of Northwest China,a 7-year trial demonstrated that PSS increased plant number per hectare by 6547 and maize yield by 1686 kg ha–1compared with the traditional method of seeding under plastic-film mulch(PM).Two-year experiments were conducted in two semi-arid regions to further understand the effects of PSS on three important aspects of production:(i)the moisture and temperature of soil,(ii)maize development,yield output,and water use efficiency(WUE),and(iii)the revenue and plastic-film residuals in comparison with that of flat planting(CK)and PM.Continuous monitoring of the soil status demonstrated that,compared with CK,the PSS treatment significantly increased the temperature and moisture of the 0–20 cm soil in the seeding row at the early stage of maize development,and it also promoted grain yield(at 884–1089 kg ha^(–1))and WUE,achieving a similar effect as the PM treatment.Economically,the labor inputs of PSS were equal to CK,whereas the PM cost an additional 960 CNY ha–1in labor for releasing the seedlings from below the film.Overall,the PSS system increased profits by 5.83%(547 CNY ha^(–1)yr^(–1))and 8.16%(748 CNY ha^(–1)yr^(–1))compared with CK and PM,respectively.Environmentally,PSS achieved a residual film recovery rate of nearly 100%and eliminated 96 to 130 kg ha^(–1)of residual plastic-film in PM in 3–5 years of maize production.Collectively,these results show that PSS is an eco-friendly technique for improving yield stability and incomes for the sustainable production of maize in semi-arid regions. 展开更多
关键词 maize soil water content soil temperature yield plastic-film plastic-film-side seeding semi-arid region
下载PDF
Coupled modeling of land hydrology-regional climate including human carbon emission and water exploitation 被引量:4
15
作者 XIE Zheng-Hui ZENG Yu-Jin +4 位作者 XIA Jun QIN Pei-Hua JIA Bing-Hao ZOU Jing LIU Shuang 《Advances in Climate Change Research》 SCIE CSCD 2017年第2期68-79,共12页
碳排出物和水使用是人的活动的二种主要类型。揭示这二项活动是否能在中国修改水文学周期和气候系统,我们用地区性的气候模型 RegCM4 进行了数字实验的二个集合。在过去常学习气候的回答到人的碳排出物的第一个实验,因为碳排出物的影... 碳排出物和水使用是人的活动的二种主要类型。揭示这二项活动是否能在中国修改水文学周期和气候系统,我们用地区性的气候模型 RegCM4 进行了数字实验的二个集合。在过去常学习气候的回答到人的碳排出物的第一个实验,因为碳排出物的影响能越过整个国家被检测,模型在全部中国上被设置。从第一个实验的结果揭示了温度可以显著地以超过 0.1 的率从 2007 ~ 2059 增加的那近表面的表情 ? 漠 ? 偉 ??? 猠散慮楲獯※ ?? 潬杮眠瑩 ? 楲楳杮琠浥数慲畴敲 ? 景吗? 展开更多
关键词 区域气候模式 水资源开发 人类活动 碳排放量 耦合模拟 水文 数值实验 夏季降水量
下载PDF
Seagull Lake,Western Eyre Peninsula,South Australia:A Saline Lake to Benefit from Climate Change? Ⅱ. Hydrology and Plants
16
作者 Peri COLEMAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期66-67,共2页
Seagull Lake is an unusual saline lake,having a marine spring connected to a large continental ecosystem.With climate change the balance between marine,meteoric and groundwater inputs to,and evaporitic and groundwater
关键词 conceptual hydrological model aquatic and palustrine plants Tecticornia flabelliformis predicted changes.
下载PDF
Initiatives to clarify mechanisms of hydrological evolution in human-influenced Yellow River Basin 被引量:2
17
作者 Li-liang Ren Shan-shui Yuan +6 位作者 Xiao-li Yang Shan-hu Jiang Gui-bao Li Qiu-an Zhu Xiu-qin Fang Yi Liu Yi-qi Yan 《Water Science and Engineering》 EI CAS CSCD 2023年第2期117-121,共5页
Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impac... Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impacts of climate change and human activities on hydrological evolution and disaster risk from a holistic perspective of the basin.This study developed initiatives to clarify the mechanisms of hydrological evolution in the human-influenced Yellow River Basin.The proposed research method includes:(1)a tool to simulate multiple factors and a multi-scale water cycle using a grid-based spatiotemporal coupling approach,and(2)a new algorithm to separate the responses of the water cycle to climate change and human impacts,and de-couple the eco-environmental effects using artificial intelligence techniques.With this research framework,key breakthroughs are expected to be made in the understanding of the impacts of land cover change on the water cycle and blue/green water redirection.The outcomes of this research project are expected to provide theoretical support for ecological protection and water governance in the basin. 展开更多
关键词 Climate change Human activities hydrological evolution Runoff change Yellow River Basin
下载PDF
Adaptation Technology: Benefits of Hydrological Services—Watershed Management in Semi-Arid Region of India
18
作者 Anupam Khajuria Sayaka Yoshikawa Shinjiro Kanae 《Journal of Water Resource and Protection》 2014年第6期565-570,共6页
Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to ... Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to develop the adaptation options to recharge groundwater resources. A watershed is a special kind of Common Pool Resources (CPRs);an area is defined by hydrological linkages where optimal management requires coordinating the use of natural resources by public participation. Watershed developments have shown significant positive impacts on water table, perennially of water in wells and water availability especially in semi-arid regions. This paper describes direct and indirect impacts of the watershed activities and benefits of hydrological services dealing with watershed management with future prediction of net irrigation water supply. In the present work, we have also discussed the multiple impacts of watershed of CPRs for improving groundwater and surface water resources. 展开更多
关键词 WATERSHED Development ADAPTATION Options hydrologICAL SERVICES Ground Water Common POOL Resources INDIA
下载PDF
Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau 被引量:1
19
作者 WANG Jin-bin XIE Jun-hong +1 位作者 LI Ling-ling ADINGO Samuel 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1277-1290,共14页
The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this s... The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau. 展开更多
关键词 fully mulched ridge–furrow SYSTEM semi-arid Loess Plateau maize productivity FARMING SYSTEM sustainability
下载PDF
Impacts of Climate Change on the Hydrology of a Small Brazilian Headwater Catchment Using the Distributed Hydrology-Soil-Vegetation Model
20
作者 Lívia Alves Alvarenga Carlos Rogério de Mello +3 位作者 Alberto Colombo Sin Chan Chou Luz Adriana Cuartas Marcelo Ribeiro Viola 《American Journal of Climate Change》 2018年第2期355-366,共12页
Climate change is one of the greatest issues for human society. The objective of this study is to assess the impacts of future climate change on seasonal average discharge and monthly water budget in a small headwater... Climate change is one of the greatest issues for human society. The objective of this study is to assess the impacts of future climate change on seasonal average discharge and monthly water budget in a small headwater catchment, located on the Grande River basin, in Minas Gerais, Brazil. The assessment is carried out using the hydrology model, DHSVM. The atmospheric forcing to drive the Distributed Hydrology-Soil-Vegetation Model (DHSVM) is derived from the downscaling of the HadGEM2-ES projections by the Eta Regional Climate Model, at 5-km high resolution. The projections assume the RCP4.5 and RCP8.5 IPCC AR5 emission scenarios. Baseline period was taken between 1961 and 1990. The projections are assessed in three time slices (2011-2040, 2041-2070 and 2071-2099). The climate change is assessed in time slices of 30 years and in comparison against the baseline period to evaluate the hydrological changes in the catchment. The results showed differences in the hydrological behavior between the emission scenarios and though time slices. Reductions in the magnitude of the seasonal average discharge and monthly water budget may alter the water availability. Under the RCP4.5 scenario, results show greater reductions in the water availability in the first time slice, whereas under RCP8.5 scenario greater reductions are indicated in the third time slice. 展开更多
关键词 CLIMATE Changes RCP4.5 and RCP8.5 Scenarios hydrologICAL Model DISCHARGE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部