期刊文献+
共找到6,876篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
1
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow Water–sediment separation structure Grille spacing Performance regulation effect
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
2
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Temporal change of plankton size structure preserved by Lugol's solution:a FlowCAM study
3
作者 Zijia LIU Yuan DONG +3 位作者 Qian P.LI Zhengchao WU Zaiming GE Mengzhen MA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期290-299,共10页
Plankton size structure is crucial for understanding marine ecosystem dynamics and the associated biogeochemical processes.A fixation step by acid Lugol’s solution has been commonly employed to preserve plankton samp... Plankton size structure is crucial for understanding marine ecosystem dynamics and the associated biogeochemical processes.A fixation step by acid Lugol’s solution has been commonly employed to preserve plankton samples in the field.However,the acid Lugol’s solution can bias the estimation of size structure and the preserved plankton size structure can vary with time.Here,we explore the impact of sample storage time on the size-structure of the plankton community preserved by Lugol’s solution.Two short-term experiments and one long-term experiment were conducted to explore the change of plankton community size structure with the storage time:covering from a week to a month,and to nearly seven months based on particle-size data obtained by continuous Flow Cytometer and Microscope(FlowCAM)measurements.We found a linear change of plankton size with the storage time in short-term periods(less than 3 months)with a decrease of the slope but an increase of the intercept for the normalized biomass size spectrum(NBS S).However,there were opposite trends for NBSS with increasing slope but decreasing intercept after3 months.The potential causes of the distinct patterns of the NBSS parameters are addressed in terms of the interplay between particle aggregation and fragmentation.We found large changes in plankton biovolume and abundance among different size classes,which may indicate a distinct effect of acid Lugol’s solution on various plankton size classes.The mechanism driving temporal change in the size-structure of the Lugolfixed plankton community was further discussed in terms of particle aggregation and fragmentation.Finally,we emphasize that the effect of storage time should be taken into account when interpreting or comparing data of plankton community acquired from samples with various storage durations. 展开更多
关键词 Lugol’s PLANKTON size structure flow Cytometer and Microscope(flowCAM)
下载PDF
Flow Structure and Short-Term Riverbed Evolution in Curved Flumes
4
作者 Shuxian Gao Yonggang Cao +1 位作者 Yuchuan Bai Yanhua Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第2期487-500,共14页
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ... River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation. 展开更多
关键词 Continuous curved flume experimental study flow structure bed short-term evolution living flexible vegetation
下载PDF
EXPERIMENTAL STUDY ON COHERENT VORTEX STRUCTURES IN DIFFERENTIALLY ROTATING QUASI TWO DIMENSIONAL ZONAL FLOW
5
作者 何钰泉 梁宝社 刘书声 《Transactions of Tianjin University》 EI CAS 1998年第2期86-89,共4页
An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow... An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow visualization and laser light scattering techniques were used to obtain the information of spatial flow patterns.Experimental results show that the coexistence of Coriolis effect and strong shear in latitudinal zones may lead to formation of coherent vortices.Power spectra analysis and photographs which were taken in a reference frame rotating with the observed vortices also justified the emergence,drift and evolution of persistent vortices on the large scale.Locked vortex state manifests the cyclone and anticyclone asymmetry. 展开更多
关键词 coherent structure rotating shallow water shear flow
下载PDF
Pore-scale modeling of pore structure properties and wettability effect on permeability of low-rank coal 被引量:2
6
作者 Xiangjie Qin Jianchao Cai Gang Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期573-584,共12页
Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic d... Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic description of water-gas flow in coal.For this purpose,we reconstructed the microstructures of low-rank coal using micro-computed tomography(micro-CT)images.Pore geometry and pore-throat parameters are introduced to establish a relationship with absolute permeability.A dual-porosity pore network model is developed to study water-gas displacement under different wetting and pore structure properties.Results show that absolute permeability is significantly affected by pore geometry and can be described using a binary quadratic function of porosity and fractal dimension.Water-gas relative permeability varies significantly and the residual gas saturation is lower;the crossover saturation first decreased and then increased with increasing porosity under hydrophobic conditions.While the water relative permeability is lower and a certain amount of gas is trapped in complex pore-throat networks;the crossover saturation is higher under hydrophilic conditions.Models with large percolating porosity and well-developed pore networks have high displacement efficiency due to low capillary resistance and avoidance of trapping.This work provides a systematic description of absolute permeability and water-gas relative permeability in coal microstructure for enhanced gas recovery. 展开更多
关键词 MICRO-CT PERMEABILITY Wetting condition Pore structure properties Water-gas flow
下载PDF
Inlet Recirculation Influence to the Flow Structure of Centrifugal Impeller 被引量:10
7
作者 YANG Ce CHEN Shan +2 位作者 LI Du YANG Changmao WANG Yidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期647-654,共8页
Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well... Inlet recirculation is proved as an effective way for centrifugal compressor surge margin extension,and is successively used in some engineering applications.Unfortunately its working mechanism is still not being well understood,which leads to redesigning of inlet recirculation mostly by experience.Also,most study about inlet recirculation is steady to date.It is necessary to study surge margin extension mechanism about inlet recirculation.To expose the mechanism in detail,steady and unsteady numerical simulations were performed on a centrifugal compressor with and without inlet recirculation.The results showed that,with inlet recirculation,the inlet axial velocity is augmented,relative Mach number around blade tip leading edge area is significantly reduced and so is the flow angle.As the flow angle decreased,the incidence angle reduced which greatly improves the flow field inside the impeller.Moreover,inlet recirculation changes the blade loading around blade tip and restrains the flow separation on the blade suction side at the leading edge area.The unsteady results of static pressure around blade surface,entropy at inlet crossflow section and vorticity distributions at near tip span surface indicated that,at near stall condition,strong fluctuation exists in the vicinity of tip area due to the interaction between tip leakage flow and core flow.By inlet recirculation these strong flow fluctuations are eliminated so the flow stability is greatly enhanced.All these improvements mentioned above are the reason for inlet recirculation delays compressor stall.This research reveals the surge margin extension reason of inlet recirculation from an unsteady flow viewpoint and provides important reference for inlet recirculation structure design. 展开更多
关键词 centrifugal compressor inlet recirculation flow field calculation flow structure UNSTEADY
下载PDF
CFD Simulation of Flow Features and Vorticity Structures in Tuna-Like Swimming 被引量:10
8
作者 杨亮 苏玉民 《China Ocean Engineering》 SCIE EI 2011年第1期73-82,共10页
The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it. In the present study, a computational fluid dynamic (CFD) simulatio... The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it. In the present study, a computational fluid dynamic (CFD) simulation of a three-dimensional traveling-wave undulations body of tuna has been developed to investigate the fluid flow features and vorticity structures around this body when moving in a straight line. The undulation only takes place in the posterior half of the fish, and the tuna-tail is considered as a lunate fin oscillating with the mode combined swaying with yawing. A Reynolds-averaged Navier-Stokes (RANS) equation is developed, employing a control-volume method and a k-omega SST turbulent model; meanwhile an unstructured tetrahedral grid, which is generated for the three-dimensional geometry, is used based on the deformation of the hind parts of the body and corresponding movement of the tail. We calculated the hydrodynamic performance of tuna-like body when a tuna swims in a uniform velocity, and compared the input power coefficient, output power coefficient and propulsive efficiency of the oscillating tuna-tail with or without body vortex shedding. Additionally, the load distribution on the body, flow features and vorticity structures around the body were demonstrated. The effect of interaction between the body-generated vortices and the tail-generated vorticity on the hydrodynamic performance can be obtained. 展开更多
关键词 CFD flow features vorticity structures hydrodynamic performance
下载PDF
Wave Forces on Submerged Semi-Circular Breakwater and Similar Structures 被引量:15
9
作者 XIE Shileng Prof. Senior Engineer, The First Design Institute of Navigation Engineering, Ministry of Communications of China, Tianjin 300222, P. R. China. 《China Ocean Engineering》 SCIE EI 1999年第1期63-72,共10页
The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular brea... The results of design and experiment of a submerged semi-circular breakwater at the Yangtze estuary show that the submerged structure will be unsafe when the general empirical wave force formula for semi-circular breakwater is used in design. Therefore, a new calculation method for the wave forces acting on a submerged semi-circular structure is given in this paper, in which the wave force acting on the inside circumference of semi-circular arch is included, and the phase modification coefficient in the general empirical formula is adjusted as well. The new wave force calculation method has been Verified by the results of seven related physical model tests and adopted in the design of the south esturary jetty of the first stage project of Deep Channel Improvement Project of the Yangtze River Estuary, the total jetty length being 17.5 km. 展开更多
关键词 semi-circular breakwater submerged structure estuary jetty wave force
下载PDF
Flow structure around high-speed train in open air 被引量:8
10
作者 田红旗 黄莎 杨明智 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期747-752,共6页
According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ... According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction. 展开更多
关键词 flow around high-speed train turbulence intensity flow region vortex structure wake region
下载PDF
Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering 被引量:3
11
作者 朱杨柱 易仕和 +2 位作者 何霖 田立丰 周勇为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期368-373,共6页
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt... In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions. 展开更多
关键词 blunt cone supersonic flow structure flow visualization supersonic film cooling
下载PDF
Analysis of Flow Structure and Calculation of Drag Coefficient for Concurrent-up Gas-Solid Flow 被引量:5
12
作者 杨宁 王维 +1 位作者 葛蔚 李静海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期79-84,共6页
This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of str... This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient. 展开更多
关键词 drag coefficient two-phase flow MULTI-SCALE flow structure two-fluid model
下载PDF
Nonplanar flow-induced vibrations of a cantilevered PIP structure system concurrently subjected to internal and cross flows 被引量:5
13
作者 Z.Y.Liu T.L.Jiang +1 位作者 L.Wang H.L.Dai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第6期1241-1256,共16页
Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insula... Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure. 展开更多
关键词 Cantilevered PIP structure Theoretical model flow-induced vibration Cross flow Internal flow
下载PDF
Power Flow Response Based Dynamic Topology Optimization of Bi-material Plate Structures 被引量:3
14
作者 XUE Xiaoguang LI Guoxi +1 位作者 XIONG Yeping GONG Jingzhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期620-628,共9页
Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini... Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures. 展开更多
关键词 dynamic topology optimization power flow response BI-MATERIAL plate structures
下载PDF
Field Measurements of Influence of Sand Transport Rate on Structure of Wind-sand Flow over Coastal Transverse Ridge 被引量:10
15
作者 DONG Yuxiang S L NAMIKAS +1 位作者 P A HESP MA Jun 《Chinese Geographical Science》 SCIE CSCD 2008年第3期255-261,共7页
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Prov... The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow. 展开更多
关键词 sand transport rate coastal transverse ridge structure of wind-sand flow field measurement
下载PDF
Differential amplification method for flow structures analysis of centrifugal pump between design and off-design points 被引量:2
16
作者 ZHANG He-hui DENG Sheng-xiang QU Ying-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1443-1449,共7页
The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed... The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed for the comparison study of different flow structures. The full steady flow fields of an industrial centrifugal pump working on-design and off-design points were numerically investigated by solving Reynolds average Navier-Stokes equations together with a shear-stress transport(SST) k-? turbulence model. And the numerically predicted performance curves of the studied pump agree well with test measurement results. Compared with the flow flied on design point under the help of differential amplification method, the disturbance caused by interaction between blade and volute tongue is very obvious and it extends to the diffuser pipe on the working point with 0.8 times rated flux. While on the point with 1.2 times rated flux, the flow distribution in impeller region is roughly even and it flows more to the bottom section of the diffuser pipe. The above method was proved to be good at displaying the subtle secondary flow structure changes with a higher resolution effect relative to single isolated case observation, which helps the optimization decision-making from multiple design cases. 展开更多
关键词 DIFFERENTIAL AMPLIFICATION COMPUTATIONAL fluid dynamics (CFD) flow structure CENTRIFUGAL PUMP
下载PDF
Force and Flow Structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number 被引量:9
17
作者 Sun Mao Hossein Hamdani (Institute of Fluid Mechanics,Beijing University of Aeronautics & Astronautics) 《空气动力学学报》 CSCD 北大核心 2000年第z1期96-102,共7页
关键词 flow Re Force and flow structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number
下载PDF
A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem 被引量:9
18
作者 HAN Dongyan XUE Ying +1 位作者 ZHANG Chongliang REN Yiping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第10期60-69,共10页
The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in rec... The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1(primary producers and detritus) to4.3(large demersal fishes). The estimated total system throughput was 12 917.10 t/(km^2·a), with 74.59% and25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5%for grazing food chain and 13.9% for detritus food chain. The system omnivory index(SOI), Finn's cycled index(FCI) and connectance index(CI) were relatively low in this area while the total primary production/total respiration(TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem. 展开更多
关键词 Ecopath with Ecosim Jiaozhou Bay energy flow trophic structure
下载PDF
Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil 被引量:2
19
作者 Qin Wu Biao Huang Guoyu Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期64-74,共11页
The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effecti... The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-w shear stress trans- port (SST) turbulence model, coupled with a two-equation F-Reo transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re = 7.5 × 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pres- sure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrody- namic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region. 展开更多
关键词 Transient flow structure Pitching hydrofoilFinite-time Lyapunov exponent Lagrangian coherentstructures
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
20
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics THREE-DIMENSION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部